

Title

Light-emitting diodes and exogenous amino acids application improve growth and yield of strawberry plants cultivated in recycled hydroponics

Author(s)

Md. Raihan Talukder, Md. Asaduzzaman, Hideyuki Tanaka, Toshiki Asao

Journal Scientia Horticulturae Volume 239, Pages 93-103

Published 15 September 2018

URL https://doi.org/10.1016/j.scienta.2018.05.033

> この論文は出版社版でありません。 引用の際には出版社版をご確認のうえご利用ください。

Light-emitting diodes and exogenous amino acids application improve growth
 and yield of strawberry plants cultivated in recycled hydroponics

3

Md. Raihan Talukder^{a,b,c}, Md. Asaduzzaman^{a,d}, Hideyuki Tanaka^a, and Toshiki Asao^{a,*}

^aFaculty of Life and Environmental Science, Shimane University, 2059 Kamihonjo, Matsue, Shimane 690 1102, Japan.

^bFaculty of Agriculture, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur 1706,
Bangladesh

¹⁰ ^cThe United Graduate School of Agricultural Sciences, Tottori University, Koyama-cho, Minami Tottori,

11 Tottori 680-8553, Japan.

¹² ^dHorticulture Research Center, Bangladesh Agricultural Research Institute, Gazipur 1701, Bangladesh.

13

^{*}Corresponding author: T. Asao (E-mail: asao@life.shimane-u.ac.jp).

15

16 Abstract

Strawberry plants in recycled hydroponics exhibit growth and yield reduction due to autotoxicity. Strawberry 17 plants were grown under light-emitting diodes (LED) and sprayed with amino acids to investigate their 18 19 influence on the growth and yield under autotoxicity. In the first study, plants were grown under three LED light conditions [Red : Blue (R : B) = 8:2, 5:5, and 2:8 adjusted to similar light intensity of 106–117, 107–125, 20 and 105–121 μ mol m⁻² s⁻¹, respectively] and under white light provided by fluorescent lamps [104–129 μ mol 21 $m^{-2} s^{-1}$ and also treated with two amino acids [hydroxyproline (Hyp) and glutamic acid (Glu)] and water 22 (control). This study was conducted under relatively high temperature (30/25 °C; day/night) in order to 23 enhance the occurrence of autotoxicity. Further, along with the nutrient solution was recycled for the duration 24 of the crop cycle to allow the accumulation of autotoxic compounds. nutrient condition. Greater growth and 25 fruit yield, higher ascorbic acid content in fruits and also higher calcium and iron content in leaves, crowns 26 and roots of strawberry plants were observed due to R : B= 8:2 LED lighting and Glu spray. In the second 27 study, the selected LED (R : B = 8:2) from the first study was used with three different intensities (i.e., 149, 28 269, and 567 μ mol m⁻² s⁻¹) and either with or without Glu spray under controlled environment condition 29 (25/20°C; day/night). Results showed that plants exposed to 567 μ mol m⁻² s⁻¹ of R : B= 8:2 LED showed 30 greater performances on growth and minerals content in leaves, crown and roots of strawberry plant supplied 31 32 either with or without Glu whereas higher number of fruits per plant and fruit yield were observed with Glu spray. Therefore, we propose that combining Glu spray with exposure to R : B = 8:2 LED light of 567 µmol 33 $m^{-2} s^{-1}$ may improve the growth, yield and quality of strawberry cultivated in a hydroponic system with a 34 recycled nutrient solution. 35

36

37 **Key Words:** autotoxicity; environment; glutamic acid; LED; hydroponics

38 **1. Introduction**

Autotoxicity, a form of interspecific allelopathy occurs when a plant releases chemical substances that 39 40 inhibit or delay its own germination and growth (Putnam 1985; Singh et al. 1999). In agricultural ecosystems, many plant species are affected by autotoxicity, leading to decreased growth, low yields, and replant failures 41 (Singh et al. 1999; Pramanik et al. 2000; Asao et al. 2003). Autotoxicity may develop because of chemicals 42 43 released in the rhizosphere (Singh et al. 1999) through various mechanisms such as leaching ation (Overland 44 1966), volatilization (Petrova 1977), root exudation (Tang and Young 1982), pollen spread in some plants (Cruz-Ortega et al. 1988), and crop residue decomposition (Rice 1974). Pronounced autotoxicity can occur in 45 plants cultivated in the same soil for several years or grown in recycled hydroponic solutions (Takahashi 46 47 1984; Zhao et al. 2015).

48 In closed hydroponic systems in which the nutrient solution is recycled, root exudates with highly variable 49 chemical compositions are the common sources of bioactive allelochemicals (Inderjit and Weston 2003). In 50 fact, root exudates represent one of the largest sources of plant chemicals released into the rhizosphere that are 51 responsible for chemical interference among plants. The synthesis and exudation of allelochemicals, along 52 with the overall production of root exudates, are typically enhanced by stress conditions; including extreme temperatures, drought conditions, and UV light (Inderjit and Weston 2003). A previous study revealed that in 53 54 *Cucumis sativa*, the concentration of benzoic acid (i.e., a major allelochemical) exuded by the roots increase 55 in nutrient solutions with increasing temperature and photoperiod length (Pramanik et al. 2000). Additionally, the inhibitory effect of Therefore, autotoxicity would be was enhanced in strawberry plants with increasing 56 temperature under controlled conditions. The growth and yield of strawberry plants are lower at 30/25 °C 57 (day/night) than at 25/20 °C (day/night) in a closed hydroponic system using a hybrid electrode fluorescent 58 59 lamp (Mondal et al. 2013).

In Japan, the current acreage of hydroponic strawberry production under hydroponic system is 627 ha. 60 (Ministry of Agriculture, Forestry and Fisheries 2015) where nutrient solutions are either renewed or supplied 61 to soilless substrates. The commercial hydroponic production of strawberry (*Fragaria × ananassa* Duch.) is 62 63 responsible for some environmental pollution because of the release of used nutrient solutions. Although 64 recycling of the nutrient solution in closed hydroponic systems is recommended for sustainable agricultural 65 production, these systems may result in the development of autotoxicity because of the accumulation of 66 allelochemicals from root exudates. In addition, autotoxicity in strawberry plants is typically characterized by 67 the development of black root rot disease, which limits strawberry yields (Yuen et al. 1991; Wing et al. 1995; Asaduzzaman et al. 2012). In closed hydroponic systems, strawberry roots release benzoic acid into the 68 69 nutrient solution (Kitazawa et al. 2005). The accumulation of this benzoic acid in the nutrient solution inhibits 70 growth and metabolic activities of strawberry roots, ultimately causing electrolyte levels in cells and root lipid peroxidation activities to increase, and the free radical scavenging activity of roots to decrease (Zhen et al. 71 72 2003). Additionally, the damaged strawberry roots exhibit impaired uptake of water and mineral nutrients

from the nutrient solution. Consequently, shoot and root growth, the number of flowers and harvested fruits
 per plant, and fruit development are adversely affected (Kitazawa et al. 2005).

75 Removing the inhibitory allelochemicals from the nutrient solution or decreasing their inhibitory effects 76 would result in normal growth and fruit yields. Thus, in our previous studies we studied elimination of these 77 chemicals or their harmful effects. We observed that activated charcoal adsorbs the accumulated phytotoxic 78 chemicals from the nutrient solution, and improves the growth and yield of strawberry plants (Kitazawa et al. 79 2005). In other studies, we revealed that supplementing the nutrient solution with auxin (Kitazawa et al. 2007) 80 or degrading the phytotoxic chemicals in strawberry root exudates (Asao et al. 2008; Asaduzzaman et al. 2012) helps prevent autotoxicity in closed hydroponic systems. However, the development of a method for 81 82 controlling autotoxicity that is suitable for the commercial production of strawberries in a closed hydroponic 83 system would be of considerable value.

Because of the adverse effects of autotoxicity on the uptake of water and minerals, supplying nutrients in 84 85 alternative ways (e.g., foliar application of amino acids) or improving strawberry plant growth with LEDs may improve strawberry production. Amino acids protect plants from stresses in different ways, including 86 87 contributing to cellular osmotic adjustments, detoxifying reactive oxygen species, maintaining membrane 88 integrity, and stabilizing enzymes/proteins (Yancey et al. 1982; Bohnert and Jensen 1996). Proline has been 89 reported to accumulate during conditions of drought (Choudhary et al. 2005), high salinity (Yoshiba et al. 90 1995), high light and UV irradiation (Saito et al. 2012), heavy metal exposure (Saradhi et al. 1995), and in 91 response to biotic stresses (Fabro et al. 2004; Haudecoeur et al. 2009). As plant growth recovers from the 92 detrimental effects of stresses via the over-production of amino acids, many researchers have suggested that 93 the application of exogenous amino acids may improve the growth and yields of stressed crops (Schat et al. 94 1997; Maini and Bertucci 1999; Heuer 2003). Recent studies have revealed that exogenous amino acids can be absorbed by leaves (Furuya and Umemiya 2002; Stiegler et al. 2013). Additionally, the foliar application of 95 exogenous amino acids positively affects the growth, yield, and quality of marigold (Sorwong and 96 Sakhonwasee 2015), Urtica pilulifera (Wahba et al. 2015), alfalfa (Pooryousef and Alizadeh 2014), Codiaeum 97 98 variegatum (Mazher et al. 2011), and grapevine (Garde-Cerdán et al. 2015; Portu et al. 2015). Mondal et al. 99 (2013) reported that the foliar application of amino acids decreased the effect of autotoxicity and increased the growth and yield of strawberry plants. In particular, the foliar application of hydroxyproline (Hyp) and 100 101 glutamic acid (Glu) enabled strawberry plants to avoid the effects of autotoxicity.

102 Light conditions may affect the release of growth inhibitors, such as benzoic acid, which is a secondary 103 metabolite associated with photosynthesis. Light-emitting diodes have recently attracted attention as an 104 artificial light source for plant production because of their long life and lower heat emission and power 105 consumption compared with fluorescent lamps. Light-emitting diodes are capable of emitting a narrow 106 wavelength band, and are able to produce high-quality light suitable for plant growth. Exposure to a 107 combination of red light (600–700 nm) and blue light (400–500 nm) induces diverse effects on plant growth. 108 Additionally, photosynthetic activities are particularly effective under red and blue light (Katsumi and Sato 109 1985; Sadak et al. 2015). Therefore, improving retarded growth and yield of strawberry under autotoxicity through <u>application</u>supplementation of different quality and <u>quantity-intensity</u> of lights along with amino acid application would be imperative for sustainable crop production. Consequently, the farmers and commercial growers who produce strawberry in greenhouse and also in plant factories through recycled hydroponics would be benefitted. The present study was conducted to investigate the effects of LEDs and amino acids on the improvement of growth and yield of strawberry plants from autotoxicity grown in a recycled hydroponic system.

116

117 **2. Materials and methods**

118

119 2.1. Plant materials

Strawberry (Fragaria × ananassa Duch. var. "Toyonoka") was used in this study. The plantlets were first 120 121 produced in tissue culture and rapidly multiplied on quarter-strength Murashige and Skoog medium (Murashige and Skoog 1962), and then transferred to a 6-benzyle adenine free rooting medium. At the two- or 122 123 three leafves stage the plantlets were acclimated to a vermiculite substrate in cell trays (48 cm \times 24 cm \times 4 124 cm; 72 cells/tray). Then the cell trays were kept for about 60 days in a growth chamber set at $20/15^{\circ}$ C (day/night) with a 12-h photoperiod (fluorescent light; 145 μ mol m⁻² s⁻¹) and 60% relative humidity. The 125 plantlets were grown with 25% standard 'Enshi' nutrient solution (Table 1, Hori 1966) to induce the formation 126 127 of new roots and leaves. At the five- or six-leaf stage, plantlets were transferred to the nursery bed of a hydroponic system in a controlled-environment room with the same conditions as in the growth chamber. 128 Strawberry plantlets were incubated in this nursery until the first cluster of flowers were observed. The first 129 flower clusters were removed and more homogenous plants were selected as planting materials. 130

131

132 2.2. Hydroponic nutrient solution

Strawberry plants were cultured in 25% standard 'Enshi' nutrient solution [pH 7.25 and electrical conductivity of 0.8 dS m^{-1}] throughout the growth period. The electrical conductivity and pH of the tap water used to prepare the nutrient solution were 0.22 dS m^{-1} and 8.18, respectively.

136

137 2.3. Hydroponic systems and cultivation procedures

This study was conducted in the plant factory of the Experimental Research Center for Biological 138 139 Resources Science at Shimane University, Japan. The controlled-environment room was maintained at 60% 140 relative humidity and 880 ppm CO₂, with a 12-h photoperiod. Two experiments were conducted once and were not repeated. In the first experiment, one virus-free and healthy plantlet at the three- or four-leaf stage 141 was added to individual plastic containers (29 cm \times 17 cm \times 8 cm). Plantlets were supported by urethane foam 142 blocks (23 mm \times 23 mm \times 25 mm), which were inserted into small holes in a black plastic floating board that 143 was placed on top of the nutrient solution. Each plastic container was filled with 3 L of 25% standard nutrient 144 solution which was not aerated. After the transplantation was complete, the containers were transferred back 145 to the controlled-environment room that was set at 30/25 °C (day/night) (Fig. 1). The nutrient solution was not 146

- renewed <u>throughout during</u> the experimental period<u>.</u> from February 23, 2016 to July 4, 2016. The amounts of mineral nutrients remained in the nutrient solution were analyzed and adjusted biweekly. A sample of the used nutrient solution was collected and filtered with qualitative filter paper (Advantec Grade no. 131; 125 mm). The nutrient solution was <u>supplemented adjusted</u> with the main nutrients to restore the initial concentrations as much as possible following analyses with a C-141 ion meter (Horiba Ltd., Kyoto, Japan) for NO₃⁻, a UV mini 1240 spectrophotometer (Shimadzu Corporation, Kyoto, Japan) for PO₄³⁻, and a Z-5010 atomic absorption spectrophotometer (Hitachi, Tokyo, Japan) for K⁺, Ca²⁺, Mg²⁺, and Fe³⁺.
- In the second experiment, plantlets exhibiting similar growth rates and vigor were transplanted to three 154 layered vertical growing beds (125 cm \times 90 cm \times 10.5 cm). Plantlets were transplanted to a foam bed fixed 155 with urethane cubes (23 mm \times 23 mm \times 27 mm), and incubated in the controlled-environment room set at 156 25/20 °C (day/night). In the vertical growing beds, five plants for each treatment were grown in each bed 157 158 having 50 L nutrient solution capacity. Two beds placed parallel to each other were connected to a tank filled 159 with 200 L nutrient solution. Therefore, each plant was treated with 20 L nutrient solution. The culture 160 solutions were not renewed entirely. There were six individual systems used for six different treatments (three 161 light conditions and with or without Glu). Nutrient solutions were recycled at 55/5 min (recycle/stop) using an automatic pump. The concentrations of the main nutrients in the nutrient solution were adjusted every three 162 weeks as described for the first experiment. Flowers were pollinated every 2 or 3 days using a calligraphy 163 brush. Fruits were harvested when 80% or more of the fruits had turned red. 164

165

166 2.4. Types of LEDs Light treatments

For the first experiment, we used three combinations of [Red (660 nm): Blue (450 nm)] LED lights (i.e. 167 2:8, 5:5, and 8:2) (Showa Denko K.K. Green Innovation Project, JapanShimane Electric Co. Ltd., Japan), with 168 169 fluorescent lamps used as a control. High frequency straight tube cool fluorescent lamps (FHF16EX-L-H) were purchased from Panasonic, Japan. All light treatments were adjusted to ensure a similar light intensity 170 (i.e. 106–117, 107–125, 105–121, and 104–129 μ mol m⁻² s⁻¹, respectively) at the surface of the floating board. 171 The light panel was set at about 20 cm above the surface of the plant canopy. Data on irradiance and full 172 173 width at half maximum (FWHM) of three types of LEDs were measure at 25 °C (Fig. 2, Table 2). In the second experiment, only one LED combination was used (i.e. R : B = 8:2) with three different intensities (i.e. 174 149, 269, and 567 μ mol m⁻² s⁻¹). We used MQ-200 Quantum separate sensor with handheld PAR meter 175 (Apogee Instruments, Inc. Logan UT, USA) for measuring PPFD in both the experiments. 176

177 178

2.5. Application of amino acids

Analytical grade amino acids were purchased from Nacalai Tesque, Inc. (Kyoto, Japan). Two amino acids [i.e. hydroxyproline (Hyp) and glutamic acid (Glu)] were used in the first experiment, while Glu was used in the second experiment because of its better performance. <u>Amino acids constitute mainly nitrogenous</u> <u>compounds which have great influence on plant growth and development. Therefore, eEach amino acid</u> concentration was adjusted so the applied nitrogen content was equivalent to that of a 200 ppm proline solution (i.e. 228 ppm Hyp and 319 ppm Glu). Leaves were sprayed with amino acid solutions (1.4 ml plant⁻¹)
<u>using a plastic hand spray bottles (Daiso, Japan)</u> three times per week from planting to the final harvest.
Control plants were sprayed with distilled water.

187

188 2.6. Experimental design

189 For the first experiment, we used three combinations of LED lights (R : B = 2:8, 5:5, and 8:2) and 190 fluorescent lamps were used as control along with two amino acids and water as control. In the second experiment, three different intensities of R : B = 8:2 LED light and either with or without Glu were used. 191 Both experiments were laid out in completely randomized design with two factors in split plot. Amino acids 192 were sprayed in split plots of light conditions Light treatments were applied as main plot factor while amino 193 194 acid applications were the sub-plot factor. Total twelve treatments in the first experiment and six treatments in the second experiment were applied by the combinations of light condition and amino acids. Each treatment 195 was replicated three times. In the first experiment, one plantlet was planted to each plastic container while five 196 197 plantlets were grown in each grow bed of hydroponic system.

198

199 2.7. Data collection

Data were collected for the following traits: anthesis date; fruit ripening date; number of leaves per plant; maximum leaf length (from the base of the petiole to the tip of the apex leaflet) and width (from the edge of two leaflets); leaf chlorophyll content [according to a chlorophyll meter (Konica Minolta, Tokyo, Japan)]; crown diameter; leaf, crown, and root dry weight; individual fruit weight and fruit yield per plant. Fruit quality parameters were also analyzed (i.e., total sugar content, citric acid level, and ascorbic acid content).

205

206 **2.8.** Determination of fruit quality parameters

After harvest, fruits were frozen at -30° C for subsequent analyses of soluble solids, titratable acidity, and ascorbic acid content following the methods described by Asaduzzaman et al. (2012). Fruit samples were thawed and juiced to determine the above-mentioned strawberry fruit qualities.

210

211 **2.9.** Determination of mineral nutrient contents in plant tissues

Mineral nutrients such as calcium, magnesium, potassium and iron contents in different plant tissues after harvest were analyzed using HNO_3 digestion as described in the Analytical Manual for the Standard Table of Food Composition in Japan (Yasumoto et al. 2006). The leaves, crowns, and roots of plants were dried, ground and digested and mineral nutrients were determined by methods mentioned in our previous report (Asaduzzaman et al. 2012).

217

218 2.10. Statistical analysis

Analysis of variance for all data was done with computer package MSTAT-C developed by Russel (1986).
The mean differences of the treatments were adjusted by Tukey's test at P<0.05.

221

222 **3. Results**

223 **3.1. Experiment-I**

224

225 **3.1.1.** Plant growth

Light quality, the application of amino acids and their interaction had significant effect on the number of 226 227 leaves per strawberry plant, maximum leaf length and crown diameter, but did not significantly affect 228 maximum leaf width, root length and chlorophyll content (Table 23). Among amino acids application, water 229 spray (WS)-produced the highest number of leaves per plant while in case of light condition it was obtained from R : B = 8:2 LED illumination. The combination of R : B = 8:2 LED and Hyp spray (HS) produced the 230 231 most leaves per plant. All other illumination treatments and amino acid applications produced similar results, 232 except for the R : B = 2:8 LED with Hyp or Glu treatment and the fluorescent light with Glu spray (GS) 233 treatment. Comparison among the light treatments revealed that exposure to all light conditions except R : B = 234 5:5 LED produced the longest leaves. While both Hyp sprayHS and Glu sprayGS but water sprayWS 235 produced longest leaves. The longest leaves (26 cmm) were observed in the Hyp sprayHS- treated plants under fluorescent light. However, plants treated with water or Glu under fluorescent light produced similar 236 results. Additionally, plants grown under all combinations of LED conditions and amino acid spray except the 237 plants exposed to R : B = 5:5 LED light with water spray WS and Hyp spray HS had similar leaves. The crown 238 239 diameter was widest in Glu sprayGS among the amino acid and in R : B = 8:2 LED among the light condition. Also, interaction of <u>Glu spray</u> and R : B = 8:2 LED produced the widest leaves among all combinations of 240 light and amino acid. 241

Leaf, crown, root and total plant root dry weights were unaffected by the amino acid application, while 242 these parameters were significantly affected by the light quality and their interaction (Table $\frac{23}{2}$). An increasing 243 trend in dry weights of leaves was observed with increase in red light intensity. The highest dry weight of 244 leaves was obtained from R : B = 8:2 LED with Glu sprayGS treated plants which was similar to plants 245 treated with water sprayWS and Hyp sprayHS under R : B = 8:2 LED. Plants produced the leaves dDry 246 247 weight production of leaf followed ing the order as R : B = 8:2 LED > R : B = 5:5 LED >fluorescent lamp > R 248 : B = 2.8 LED regardless of applied amino acid. Almost similar trends of results were observed for the crown 249 dry weight and total plant dry weight.

250

251 **3.1.2.** Yield and fruit quality

The number of days to anthesis and fruit ripening were unaffected by the light, amino acid treatments and their interaction (Table <u>34</u>). Number of flowers per plant, average fruit weight, number of fruits, and fruit yield per plant were influenced significantly by amino acid and light quality and also by their interaction. Significantly higher number of flowers and fruits per plant were produced by the R : B = 8:2 LED compared to other lights and by <u>Glu sprayGS</u> compared to <u>Hyp sprayHS</u> or <u>water sprayWS</u>. The highest number of flowers and fruits were obtained from plants treated with <u>Glu sprayGS</u> under R : B = 8:2 LED. The R : B = 258 2:8 LED produced fewer number of flowers and fruits regardless of amino acid application. Similarly, the 259 average fruit weight was significantly higher in R : B = 8:2 LED and also by Hyp sprayHS. However, highest 260 average fruit weight was obtained from plants treated with <u>Glu sprayGS</u> under R : B = 8:2 LED. Fruit yield 261 per plant was also significantly higher in R : B = 8:2 LED and by <u>Glu sprayGS (Fig. 3)</u>. Additionally, the 262 highest fruit yield was obtained from plants treated with <u>Glu sprayGS</u> under R : B = 8:2 LED followed by 263 <u>Hyp sprayHS</u> under same light condition. R : B = 5:5 and R : B = 2:8 light produced significantly lower fruit 264 yield per plant irrespective of amino acid spraying.

Citric acid level of fruits was not significantly affected by light or amino acid treatments and their 265 interaction, unlike the total soluble solid and ascorbic acid content (Table $\frac{34}{2}$). Total soluble solid content in 266 fruits was unaffected by amino acid treatment but affected by light condition and their combination. The 267 highest total soluble solid content fruits were found in <u>Glu spray</u> GS treated plants under R : B = 8:2 LED light 268illumination. On the other hand, significantly higher ascorbic acid content was recorded by amino acid and 269 light condition and their interaction. However, fruits with highest ascorbic acid content was obtained from the 270 plants grown under R : B = 8:2 LED light in amino acids and control (water). The LED light R : B = 5:5 and 271 272 2:8 produced strawberry fruits with lower ascorbic acid content either with or without amino acid spray than R : B = 8:2 LED. The results revealed that light composition gradient from red to blue (i.e. R : B = 8:2 to 2:8) 273 274 was associated with a decrease in ascorbic acid concentration.

275

276 **3.1.3.** *Mineral nutrient content in plant tissues*

Iron, magnesium, and potassium except calcium contents in strawberry leaf were significantly affected by the combined effect of light and amino acid treatments (Table 4<u>5</u>). The highest leaf iron content (215 mg kg⁻¹ DW) was observed for plants sprayed with water and grown under fluorescent lamps. However, this iron content was similar to that of <u>Hyp sprayHS</u> and <u>Glu spray GS</u>-treated plants under the same light conditions. The iron content induced by the R : B = 8:2 LED combined with any amino acid treatment was similar to that of plants grown under fluorescent lamps. Additionally, the R : B = 5:5 or 2:8 LED treatments combined with any spray treatment significantly decreased the leaf iron contents.

The leaf magnesium content was the highest (7.6 mg g⁻¹ DW) in plants with Glu sprayGS under 284 fluorescent light. Similar leaf magnesium content were observed for the Hyp spray HS-and water spray-285 treated plants under the same light conditions and for the plants exposed to R : B = 8:2 LED combined with 286 the Glu sprayGS or water treatment. The R : B = 5.5 or 2.8 LED with all spray treatments resulted in 287 relatively low leaf magnesium content. The leaf potassium content was the highest (44.2 mg g⁻¹ DW) 288 following the <u>Hyp spray</u>HS treatment under the R : B = 2.8 LED condition. All other light conditions and 289 290 spray treatments produced similar leaf potassium contents, except for the R:B = 8:2 LED, which resulted in 291 lower leaf potassium contents regardless of the spray treatments.

For the crowns, the abundance of all minerals, except for potassium was significantly affected by the combined effects of exogenous amino acids and LED conditions (Table 45). The iron content was the highest (425 mg kg⁻¹ DW) in plants that were sprayed with water and grown under fluorescent light. Overall, the fluorescent light treatment produced the highest crown iron contents irrespective of the applied amino acid. Similar results were observed for magnesium. In contrast, the crown calcium content was the highest (3.7 mg g^{-1} DW) in <u>Glu sprayGS</u>-treated plants under the R : B = 2:8 LED light. All other light and spray treatments induced similar crown calcium contents, with the exception of the fluorescent light condition combined with the <u>Glu sprayGS</u> treatment.

300

301 3.2. Experiment-II

302

303 3.2.1. Growth parameters

Light intensity and the combined effect of light intensity and Glu sprayGS showed a significant effect on 304 305 the number of leaves per strawberry plant, crown diameter, and root length, while the individual Glu sprayGS treatment did not (Table 56). The plants exposed to high-light (HL) intensity with the Glu sprayGS treatment 306 produced the most leaves per plant. Plants treated with high-lightHL intensity without Glu and those exposed 307 to medium-light (ML) intensity with or without Glu had a similar number of leaves per plant. In contrast, the 308 309 low-light (LL) intensity with or without Glu produced fewer leaves per plant. Similarly, the widest crown diameter (26.7 mm) was observed for the high-light HL intensity and Glu sprayGS treatment, although the 310 high-light HL intensity without the Glu sprayGS resulted in a similar crown diameter. We observed that the 311 crown diameter decreased with decreasing light intensity, with the Glu sprayGS having no significant effect. 312 313 The longest roots (62.5 cm) were observed following the treatment with high-lightHL intensity and the Glu 314 sprayGS, although the Glu sprayGS did not have a significant effect. Additionally, the root lengths were 315 similar in plants exposed to medium-light ML intensity, regardless of the spray treatment. In contrast, the low-316 lightLL intensity treatment with or without the Glu sprayGS produced relatively shorter roots. The length, width, and chlorophyll content of leaves were not significantly affected by either light intensity, Glu sprayGS 317 318 treatment or their interaction.

The dry weights of strawberry roots, leaves, and crowns, roots and total plant dry weight were significantly 319 affected either by light LED intensity or and combination of ed effect of lightLED intensity and Glu sprayGS, 320 but not by GS-Glu spray alone-treatment (Table 56). The plants treated with high-lightHL intensity with and 321 without the Glu sprayGS had similar dry weights. Furthermore, the highest dry weights of leaves, crown, and 322 roots and total plant were observed as at 25.4, 6.1, and 4.1, and 35.6 g plant⁻¹, respectively following the high-323 light HL intensity with Glu spray GS treatment. These dry weights were similar to those of plants treated with 324 high-lightHL intensity without the Glu sprayGS. The root, leaf, and crown, root and total plant dry weights 325 resulting from exposures to the low-lightLL and medium-lightML intensities (with or without the Glu 326 327 sprayGS) were lower than those of the plants treated with high-lightHL intensity.

329 **3.2.2.** Yield and quality of fruits

328

The number of fruits per plant and average fruit weight were significantly affected by light intensity and the interaction effect of light intensity and <u>Glu sprayGS</u>, but not by the <u>Glu sprayGS</u> alone (Table <u>67</u>).

332 However, fruit yield per plant was significantly affected by both <u>Glu sprayGS</u> and light intensity and their 333 interaction (Fig. 4). Plants treated with high-lightHL intensity and the Glu sprayGS produced the most fruits 334 per plant (37.2). The high-light HL intensity treatment without the Glu sprayGS resulted in the second highest number of fruits per plant, which was similar to the fruit yield per plant due to the treatments with medium-335 light<u>ML</u> intensity (with or without the Glu sprayGS) or low-light<u>LL</u> intensity with the Glu sprayGS. The low-336 lightLL intensity treatment without the Glu sprayGS generated the fewest fruits per plant. The greatest 337 average fruits were collected from plants grown under high-lightHL intensity without Glu applications. 338 However, the <u>Glu sprayGS</u> treatment had no significant effect. The plants grown under <u>low-lightLL</u> and 339 medium-lightML intensities produced smaller average fruits than medium-lightML intensity. The total fruit 340 weight was the highest (249.0 g plant⁻¹) for the plants exposed to high-lightHL intensity and Glu, followed by 341 the plants treated with high-lightHL intensity without Glu (175.0 g plant⁻¹) and the plants exposed to medium-342 light ML intensity with Glu (Fig. 4). The lowest total fruit weights (60.6 g plant⁻¹) were recorded for the plants 343 grown under low-lightLL intensity with no Glu sprayGS treatment. 344

Total soluble solid content was significantly affected by light intensity and by the combined effect of light intensity and <u>Glu sprayGS</u>, but not by Glu alone (Table <u>67</u>). The ascorbic acid and citric acid levels were unaffected by light intensity, Glu application, or their interaction. The highest total soluble solid content (7.3%) was observed in plants treated with <u>high-lightHL</u> intensity with or without Glu, while the lowest soluble solid content (5.3%) was obtained for the plants exposed to <u>low-lightLL</u> intensity without Glu.

350 351

3.2.3. Mineral nutrient content in plant tissues

352 Light intensity and Glu sprayGS treatments had no significant effects on potassium and magnesium contents in the crowns, leaves, and roots (Table 78). In these plant parts, calcium and iron content was 353 significantly affected by either light intensity or the interaction with Glu sprayGS treatment but Glu sprayGS 354 application showed no significant effect. Exposure to high-lightHL intensity resulted in the highest root 355 calcium contents (75.0 mg⁻¹ g DW with Glu and 79.0 mg g⁻¹ DW without Glu) and crown calcium contents 356 (67.5 mg g^{-1} DW with Glu and 59.8 mg g^{-1} DW without Glu). There were no significant differences in the leaf 357 calcium contents under all light intensities with or without the <u>Glu sprayGS</u> treatment, except for the plants 358 treated with <u>low-lightLL</u> intensity and Glu, which had lower leaf calcium contents. Additionally, the plants 359 grown under high-light HL intensity with the Glu sprayGS treatment produced the highest iron contents in the 360 roots, crowns, and leaves. 361

362

363 **4. Discussion**

In recent investigations of autotoxicity in strawberry plants under a closed hydroponic system, several researchers (Kitazawa et al. 2005, 2007; Asao et al. 2008; Asaduzzaman et al. 2012; Mondal et al. 2013) identified the responsible allelochemicals and suggested possible ways of overcoming this phenomenon. They revealed that amino acid supplements could ameliorate the negative effects of autotoxicity in strawberry plants grown under greenhouse condition and also in *In vitro* condition. Other studies reported that, high-

369 temperature conditions enhanced the exudation of allelochemicals from plants under recycled hydroponics 370 (Pramanik et al. 2000). It caused physiological, biochemical, and molecular changes and affecting metabolism, 371 such as lipid liquefaction or disruption of membrane integrity (Levitt 1980). Heat stress was also found to be 372 enhanced the production and exudation of allelochemicals that promote autotoxicity (Inderjit and Weston 2003). Although strawberry plants are a temperate crop with optimal growth temperatures of 10-26 °C 373 (Ledesma et al. 2004), as a field- and greenhouse-grown crop, they are often subjected to high temperature. 374 Addressing autotoxicity problem in recycled hydroponics, we studied the effect of LED light and amino acids 375 on the recovery of growth and yield in strawberry grown in relatively higher temperature (30/25 °C; 376 day/night) settings. In this experiment, strawberry plants were grown under different LED_s as supplemental 377 378 lights along with amino acids application.

379 In the first experiment, we observed that some growth parameters, such as leaf number, leaf width, and leaf length, root, and crown dry weights were enhanced by amino acid application and LED light (Table 23). 380 Research results showed that foliar application of amino acids increases the dry weights in bean (Nassar et al. 381 2003) and onion (Amin et al. 2011). As amino acids are the precursors that used during chlorophyll synthesis, 382 383 their supplementation may affect dry matter production in plants (Yaronskya et al. 2006). In particular, Hyp and Glu were found to increase strawberry plant dry weight under allelochemical stress conditions (Mondal et 384 385 al. 2013). Moreover, the foliar application of amino acids increases plant protein contents, which ultimately increases the dry matter (Das et al. 2002). The underlying mechanism is that when plants experience 386 387 autotoxicity, ion uptake and hydraulic conductivity (i.e. water uptake) are the most affected processes because 388 the roots are the first plant parts to encounter the autotoxins accumulated in the rhizosphere (Blum et al. 1999). 389 An alternative means of absorbing-mineral nutrients absorption other than through the roots may help to 390 mitigate the effects of autotoxicity to ensure sustainable growth and productivity of strawberry plants. In our present study, spraying Hyp and Glu showed positive influence on the growth and yield of strawberry. 391

392 It also revealed that yield contributing characters such as number of flowers per plant and number of fruits were greatly influenced by Glu spraying and R : B= 8:2 LED treatment. Fruit yield was significantly higher in 393 plants grown under R : B = 8:2 LED either with Glu sprayGS followed by Hyp sprayHS under same light 394 condition. Whereas while plants under R:B= 5:5 and R:B= 2:8 LED produced significantly lower fruit yield 395 irrespective of amino acids applied (Table 34). In addition, iron and magnesium contents in strawberry leaves 396 397 were found higher under R : B = 8:2 LED and also in fluorescent light treated with either amino acids or water (Table 45). The greater improvement in overall strawberry plant performance induced by the R : B = 8:2 LED 398 399 might be due to the higher proportion of red light. Application of LEDs with precisely adjusted spectral composition of light may provide better control over plant stress responses. Recently, LED supplemental 400 401 lightingit was reported to accelerate the photosynthetic activities and promote the growth of strawberry plants 402 (Hidaka et al., 2013). A comparison of the photosynthetic rates of strawberry leaves exposed to red (660 nm) or blue (450 nm) LEDs indicated that red light leads to higher quantum efficiency (Yanagi et al. 1996a) while 403 blue LEDs at 30 μ mol m⁻² s⁻¹ or red LEDs at 100 μ mol m⁻² s⁻¹ found to restore chlorophyll synthesis in wheat 404 seedlings (Tripathy and Brown, 1995). Other researchers also observed better plant responses to red and blue 405

LED combinations in various crops, including increased <u>total biomass in</u> red leaf lettuce-<u>total biomass</u> (Stutte et al. 2009), enhanced chlorophyll a and b accumulation in kale plants (Lefsrud et al. 2008), and increased growth of lettuce, spinach, and radish (Yorio et al. 1998).

409 We provided supplemented LED lights to strawberry plants under relatively higher growing temperatures to enhance autotoxicity phenomenon, with a view that it can alleviate the heat stress condition. Plant biochemical 410 responses to different stressors can be triggered by precise changes to the light spectral composition, which 411 can be induced with LEDs. These light sources emit low heat and UV radiation, and they can be operated at a 412 413 fraction of the cost of fluorescent lights. It is reported that LEDs may be more suitable for plant cultures than many other light sources (Massa et al. 2008). Studies by the Wisconsin group confirmed the necessity of 414 415 supplementing high-output red LEDs with blue light to promote acceptable plant growth (Hoenecke et al. 416 1992).

It is mentionable that, in the first study, the overall performances of strawberry plant were lower than the 417 418 optimum level. The main reason was associated with the higher growing temperature (30/25 °C; day/night) which restrict the optimum plant growth and development, and lack of aeration. Thus, influence of exogenous 419 420 amino acid application and also red and blue light ratios was not pronounced greatly. Still positive influence of R : B = 8:2 LED along with Glu application was observed. In the following studies, different intensities of 421 422 R : B = 8.2 LED with or without Glu application was investigated under optimum growth condition at 25/20 °C (day/night) in the plant factory research facilities of Shimane university. Strawberry production in 423 424 the plant factory doesn't face the heat stress but growing in the recycled hydroponics creates autotoxicity. In 425 the plant factory, artificial lights especially LEDs are the main source of light. Therefore, in this present study, 426 influence of R : B= 8:2 LED with varied intensities along with Glu were investigated to overcome 427 autotoxicity under recycled hydroponics.

In the second experiment, plants exposed to high-light (HL)-intensity showed greater performances in 428 terms of number of leaves per plant, crown diameter, root length and dry weights of the roots, shoots, and 429 430 crowns (Table $\frac{56}{56}$). However, significantly similar positive influence was observed either with or without Glu sprayGS. Results also indicated that high-lightHL intensity provided by the R : B = 8.2 LED treatment 431 increases strawberry fruit yields, while Glu can compensate for the effects of decreased light intensity. 432 Spraying Glu in combination with R : B= 8:2 LED might improve the strawberry growth and development 433 434 under autotoxicity stress through supplying nitrogenous compounds via leaf stomata. Several researches 435 supported this statement. Amino acids are the nitrogenous compound which can be absorbed by leaf exogenously (Furuya and Umemiya 2002; Stiegler et al. 2013). Recent research revealed that foliar 436 application of amino acids has positive influence on the growth, yield and quality of alfalfa (Pooryousef and 437 Alizadeh 2014), Chinese cabbage (Cao et al. 2010); leafy radish (Liu et al. 2008) and Japanese pear (Takeuchi 438 439 et al. 2008). Moreover, it is reported to act as bio-stimulants in plant under abiotic and biotic stress conditions 440 (Maini and Bertucci 1999; Heuer 2003; Sadak et al. 2015).

441 Glutamic acid, in particular is important for nitrogen metabolism, and it is preferred as amino-donor for the 442 different aminotransferase reactions of subsequent amino acid inter-conversions (Lea and Ireland 1999).

443 Ohyama et al. (2017) presented that, during amino acid metabolism in soybean plant, ammonium ion (NH₄⁺) is first assimilated into Glutamine (Gln) combined with Glu by the enzyme glutamine synthetase. As it was 444 found in our second study, higher rate and intensity of red light LED was widely accepted to enhance 445 photosynthesis in plants. It was reported that, the red wavelengths (600 to 700 nm) were efficiently absorbed 446 by plant pigments (Sager and McFarlane 1997). Red LEDs were also considered as the most efficient emitting 447 at 660 nm, close to an absorption peak of chlorophyll which saturated phytochrome resulting in high-Pfr 448 449 photostationary state (Massa et al. 2008). Lettuce plants grown under red LEDs alone had more leaves and 450 longer stems than plants grown under blue LEDs only (Yanagi et al. 1996b). In our studies, R : B = 8:2 LED light at an intensity of 567 μ mol m⁻² s⁻¹ combined with the foliar application of Glu, increase the growth and 451 yield of strawberry plants in closed hydroponic systems. 452

453

454 **5. Conclusion**

455 In the present studies, we investigated the use of LED (R : B) and exogenous amino acid in order to 456 improve the growth and yield of strawberry plants grown in recycled hydroponics, where accumulation of root 457 exudates caused autotoxicity. The first study was conducted under relatively higher temperature (30/25 °C; day/night), which enhanced development of autotoxicity, we targeted to reduce through artificial lighting and 458 also amino acid application. We observed a greater growth, minerals (iron and magnesium), yield attributes, 459 and fruit yield of strawberry due to R : B= 8:2 LED lighting and Glu spraying. However, the overall 460 performances of strawberry plant were lower than the optimum level which was mainly associated with the 461 higher growing temperature (30/25 °C; day/night) that restrict optimum plant growth and development. Thus, 462 influence of exogenous amino acid application and also red and blue light ratios was not pronounced greatly. 463 While in the second study, plants exposed to R : B= 8:2 LED (567 μ mol m⁻² s⁻¹) showed greater 464 performances on growth and several mineral content in strawberry plant supplied either with or without Glu. 465 But fFruits number and yield per plants were higher with Glu than the ones sprayed without Glu. Therefore, 466 the use of LED (R : B = 8:2) at higher intensity along with Glu application may improve growth and yield of 467 strawberry plants grown in a closed hydroponics and thus alleviate the inhibitory effect of autotoxicity. 468 469 Further research is required to characterize the mechanisms underlying the improved growth induced by 470 amino acid supplementation. Additionally, different LED spectral conditions may positively influence plants 471 affected by autotoxicity, and would be the focus of our future investigations.

472

473 **References**

Amin, A.A., Gharib, F.A.E., El-Awadi, M., Rashad, E.S.M., 2011. Physiological response of onion plants to foliar application of putrescine and glutamine. Sci. Hortic. 129, 353-360.

- Asaduzzaman, M., Kobayashi, Y., Isogami, K., Tokura, M., Tokumasa, K., Asao, T., 2012. Growth and yield
 recovery in strawberry plants under autotoxicity through electro-degradation. Eur. J. Hort. Sci. 77, 58-67.
- 478 Asao, T., Kitazawa, H., Ban, T., Pramanik, M.H.R., 2008. Electrodegradation of root exudates to mitigate

- 479 autotoxicity in hydroponically grown strawberry (*Fragaria* × *ananassa* Duch.) plants. HortScience. 43,
 480 2034-2038.
- Asao, T., Hasegawa, K., Sueda, Y., Tomita, K., Taniguchi, K., Hosoki, T., Pramanik, M.H.R., Matsui, Y.,
 2003. Autotoxicity of root exudates from taro. Sci. Hortic. 97, 389-396.
- Blum, U., Shafer, R., Lehmen, M.E., 1999. Evidence for inhibitory allelopathic interactions including
 phenolic acids in field soils: Concept vs. an experimental model. Crit. Rev. Plant Sci. 18, 673-693.
- Bohnert, H.J., Jensen, R.G., 1996. Strategies for engineering water-stress tolerance in plants. Trends
 Biotechnol. 14, 89-97.
- Cao, J.X., Peng, Z.P., Huang, J.C., Yu, J.H., Li, W.N., Yang, L.X., Lin, Z.J., 2010. Effect of foliar application
 of amino acid on yield and quality of flowering Chinese cabbage. Chin. Agric. Sci. Bull. 26, 162-165.
- Choudhary, N.L., Sairam, R.K., Tyagi, A., 2005. Expression of delta1-pyrroline-5- carboxylate synthetase
 gene during drought in rice (*Oryza sativa* L.). Ind. J. Biochem. Biophysics. 42, 366-370.
- 491 Cruz-Ortega, R., Anaya, A.L., Romos, L., 1988. Effects of allelopathic compounds from corn pollen on
 492 respiration and cell division of watermelon. J. Chem. Ecol. 14, 71-86.
- Das, C., Sengupta, T., Chattopadhyay, S., Setua, M., Das, N.K., Saratchandra, B., 2002. Involvement of
 kinetin and spermidine in controlling salinity stress in mulberry (*Morus alba* L. cv. S1). Acta Physiol.
 Plantarum. 24, 53-57.
- Fabro, G., Kovács, I., Pavet, V., Szabados, L., Alvarez, M.E., 2004. Proline accumulation and AtP5CS2 gene
 activation are induced by plant-pathogen incompatible interactions in Arabidopsis. Mol. Plant–Microbe
 Inter. 17, 343-350.
- Furuya, S., Umemiya, Y., 2002. The influence of chemical forms on foliar-applied nitrogen absorption for
 peach trees. Proc. Intl. Sem. Foliar Nutr. Acta Hort. 594, 97-103.
- Garde-Cerdán, T., Santamaría, P., Rubio-Bretón, P., González-Arenzana, L., López-Alfaro, I., López, R.,
 2015. Foliar application of proline, phenylalanine, and urea to Tempranillo vines: Effect on grape volatile
 composition and comparison with the use of commercial nitrogen fertilizers. Food Sci. Technol. 60, 684 689.
- Haudecoeur, E., Planamente, S., Cirou, A., Tannieres, M., Shelp, B.J., Morera, S., Faure, D., 2009. Proline
 antagonizes GABA-induced quenching of quorum-sensing in *Agrobacterium tumefaciens*. Proc. Nat. Acad.
 Sci. USA. 106, 14587-14592.
- Heuer, B., 2003. Influence of exogenous application of proline and glycine betaine on growth of salt-stressed
 tomato plants. Plant Sci. 165, 693-699.
- 510 Hidaka, K., Dan, K., Imamura, H., Miyoshi, Y., Takayama, T., Sameshima, K., Kitano, M., Okimura, M.,
- 511 2013. Effect of supplemental lighting from different light sources on growth and yield of strawberry.
 512 Environ. Cont. Biol. 51, 41-47.
- Hoenecke, M.E., Bula, R.J., Tibbitts, T.W., 1992. Importance of blue photon levels for lettuce seedlings
 grown under red-light emitting diodes. HortScience. 27, 427-430.
- 515 Hori, H., 1966. Gravel culture of vegetables and ornamentals. Yokendo, Tokyo, Japan. pp. 60-79.

- Inderjit, Weston, L.A., 2003. Root exudates: an overview, in: de Kroon, H., Visser, E.J.W. (Eds.), Root
 ecology. Ecological Studies 168, Springer, Verlag Berlin, Heidelberg, New York, pp. 235-255.
- Katsumi, I., Sato, T., 1985. Effect of light quality on the growth and yield of strawberry. Kyushu Agril. Res.
 47, 221.
- Kitazawa, H., Asao, T., Ban, T., Pramanik, M.H.R., Hosoki, T., 2005. Autotoxicity of root exudates from
 strawberry in hydroponic culture. J. Hort. Sci. Biotechnol. 80, 677-680.
- Kitazawa, H., Asao, T., Ban, T., Hashimoto, Y., Hosoki, T., 2007. 2,4-D and NAA supplementation mitigates
 autotoxicity of strawberry in hydroponics. J. Appl. Hort. 9, 26-30.
- Lea, P.J., Ireland, R.J., 1999. Nitrogen metabolism in higher plants, in: Singh, B.K. (Eds.), Plant amino acids:
 biochemistry and biotechnology, Marcel Dekker, New York, pp. 1-47.
- Ledesma, N.A., Kawabata, S., Sugiyama, N., 2004. Effect of high temperature on protein expression in
 strawberry plants. Biol. Plant. 48, 73-79.
- Lefsrud, M.G., Kopsell, D.A., Sams, C.E., 2008. Irradiance from distinct wavelength light-emitting diodes
 affects secondary metabolites in kale. HortScience. 43, 2243-2244.
- Levitt, J., 1980. Responses of plants to environmental stress. 2nd ed. Academic Press, New York, USA. 497
 pp.
- Liu, X.Q., Ko, K.Y., Kim, S.H., Lee, K.S., 2008. Effect of amino acid fertilization on nitrate assimilation of
 leafy radish and soil chemical properties in high nitrate soil. Commun. Soil Sci. Plant Anal. 39, 269-281.
- 534 Ministry of Agriculture, Forestry and Fisheries. 2015. Available:
- 535 https://docs.google.com/viewer?url=http%3A%2F%2Fwww.maff.go.jp%2Fj%2Fseisan%2Fryutu%2Fengei
 536 %2Fsisetsu%2Fhaipura%2Fattach%2Fx1s%2Fsetti 7.xls [accessed 28 December 2017].
- Maini, P., Bertucci, B.M., 1999. Possibility to reduce the effects of the viruses with a biostimulant based on
 amino acids and peptides. Agro Food Ind. Hi-Technol. 10, 26-28.
- Massa, G.D., Kim, H.H., Wheeler, R.M., Mitchell, C.A., 2008. Plant productivity in response to LED lighting.
 HortScience. 43, 1951-1956.
- Mazher, A.A.M., Zaghloul, S.M., Mahmoud, S.A., Siam, H.S., 2011. Stimulatory effect of kinetin, ascorbic
 acid and glutamic acid on growth and chemical constituents of *Codiaeum variegatum* L. plants. Amer. Eur.
 J. Agric. Environ. Sci. 10, 318-323.
- Mondal, F.M., Asaduzzaman, M., Kobayashi, Y., Ban, T., Asao, T., 2013. Recovery from autotoxicity in strawberry by supplementation of amino acids. Sci. Hortic. 164, 137-144.
- 546 Murashige, T., Skoog, F., 1962. A revised medium for rapid growth and bioassays with tobacco tissue 547 cultures. Physiol. Plant. 15, 473-497.
- Nassar, A.H., El-Tarabily, K.A., Sivasithamparam, K., 2003. Growth promotion of bean (*Phaseolus vulgaris*L.) by a polyamine-producing isolate of Streptomyces griseoluteus. Plant Growth Regul. 40, 97-106.
- 550 Ohyama, T., Ohtake, N., Sueyoshi, K., Ono, Y., Tsutsumi, K., Ueno, M., Tanabata, S., Sato, T., Takahashi,
- 551 Y., 2017. Amino acid metabolism and transport in soybean plants, in: Asao, T., Asaduzzaman, M. (Eds.),
- 552 Amino Acid New insights and roles in plant and animal. InTech, Croatia, pp. 171-196.

- 553 Overland, L., 1966. The role of allelopathic substances in the smother crops barley. Amer. J. Bot. 53, 423-432.
- 554 Petrova, A.G., 1977. Effect of phytoncides from soybean, gram, chickpea and bean on uptake of phosphorus
- by maize, in: Grodzinsky, A.M. (Eds.), Interaction of plants and microorganisms in Phytocenoses, Kiev:
 Naukova Dumka, pp. 91-97.
- Pooryousef, M., Alizadeh, K., 2014. Effect of foliar application of free amino acids on alfalfa performance
 under rainfed conditions. Res. Crops. 15, 254-258.
- 559 Portu, J., López-Alfaro, I., Gómez-Alonso, S., López, R., Garde-Cerdán, T., 2015. Changes on grape phenolic
- composition induced by grapevine foliar applications of phenylalanine and urea. Food Chem. 180, 171-180.
- Pramanik, M.H.R., Nagai, M., Asao, T., Matsui, Y., 2000. Effects of temperature and photoperiod on
 phytotoxic root exudates of cucumber (*Cucumis sativa*) in hydroponic culture. J. Chem. Ecol. 26, 1953 1967.
- Putnam, A.R., 1985. Weed allelopathy, in: Duke, S.O. (Eds.), Weed physiology: Reproduction and
 Ecophysiology, CRC Press, Boca Raton FL, pp. 131-155.
- 566 Rice, E.L., 1974. Allelopathy. Academic Press, New York.
- Russel, D. F., 1986. M-STAT Director. Crop and Soil Science Department, Michigan, State University, U. S.
 A.
- Sadak, M., Abdelhamid, M.T., Schmidhalter, U., 2015. Effect of foliar application of amino acids on plant
 yield and some physiological parameters in bean plants irrigated with seawater. Acta Biológica Colom. 20,
 141-152.
- Sager, J.C., McFarlane, J.C., 1997. Radiation, in: Langhans, R.W., Tibbitts, T.W. (Eds.), Plant growth
 Chamber Handbook, Iowa State Univ. Press, North Central Region Research Publication No. 340, Iowa
 Agriculture and Home Economics Experiment Station Special Report no. 99, Ames, IA, pp. 1-29.
- Saito, Y., Shimizu, H., Nakajima, H., Miyasaka, T., Doi, K., 2012. Influence of light quality, specially red
 light by using the LED in lettuce cultivation. Environ. Eng. 24, 25-30.
- Saradhi, P.P., Alia Arora, S., Prasad, K.V.S.K., 1995. Proline accumulates in plants exposed to UV radiation
 and protects them against UV induced peroxidation. Biochem. Biophysics Res. Commun. 209, 1-5.
- Schat, H., Sharma, S.S., Vooijs, R., 1997. Heavy metal-induced accumulation of free proline in a metaltolerant and a non-tolerant ecotype of Silene vulgaris. Physiol. Plant. 101, 477-482.
- Singh, H.P., Batish, D.R., Kohli, R.K. 1999. Autotoxicity: concept, organisms and ecological significance.
 Crit. Rev. Plant Sci. 18, 757-772.
- Sorwong, A., Sakhonwasee, S., 2015. Foliar application of glycine betaine mitigates the effect of heat stress in
 three marigold (*Tagetes erecta*) cultivars. Hort. J. 48, 161-171.
- Stiegler, J.C., Richardson, M.D., Karcher, D.E., Roberts, T.L., Richard, J., Norman, R.J., 2013. Foliar
 absorption of various inorganic and organic nitrogen sources by creeping bent grass. Crop Sci. 53, 11481152.
- Stutte, G.W., Edney, S., Skerritt, T., 2009. Photoregulation of bioprotectant content of red leaf lettuce with
 light-emitting diodes. HortScience. 44, 79-82.

- Takahashi, K., 1984. The replant failures of vegetables. Research Reports. Nat. Res. Inst. Veg. Tea Sci. Japan,
 87-99 (in Japanese, English abstract).
- Takeuchi, M., Arakawa, C., Kuwahara, Y., Gemma, H., 2008. Effects of l-pro foliar application on the quality
 of 'Kosui' Japanese pear. Acta Hortic. 800, 549-554.
- Tang, C.S., Young, C.C., 1982. Collection and identification of allelopathic compounds from the undisturbed
 root system of bitalta limpograss (*Helmarthria altissima*). Plant Physiol. 69, 155-160.
- Tripathy, B.C., Brown, C.S., 1995. Root-shoot interaction in the greening of wheat seedlings grown under red
 light. Plant Physiol. 107, 407-411.
- Wahba, H.E., Motawe, H.M., Ibrahim, A.Y., 2015. Growth and chemical composition of *Urtica pilulifera* L.
 plant as influenced by foliar application of some amino acids. J. Mat. Environ. Sci. 6, 499-509.
- Wing, K.B., Pritts, M.P., Wilcox, W.F., 1995. Biotic, edaphic and cultural factors associated with strawberry
 black root rot in New York. HortScience. 30, 86-90.
- Yanagi, T., Okamoto, K., Takita, S., 1996a. Effect of blue and red light intensity on photosynthetic rate of
 strawberry leaves. Acta Hort. 440, 371-376.
- Yanagi, T., Okamoto, K., Takita, S., 1996b. Effect of blue, red, and blue/red lights of two different PPF levels
 on growth and morphogenesis of lettuce plants. Acta Hort. 440, 117-122.
- Yancey, P.H., Clark, M.B., Hands, S.C., Bowlus, R.D., Somero, G.N., 1982. Living with water stress:
 evaluation of osmolyte systems. Sci. 217, 1214-1222.
- Yaronskaya, E., Vershilovskaya, I., Poers, Y., Alawady, A.E., Averina, N., Grimm, B., 2006. Cytokinin
 effects on tetrapyrrole biosynthesis and photosynthetic activity in barley seedlings. Planta, 224, 700-709.
- Yasumoto, N., Tacheuchi, M., Yasui, A., Watanabe, T. 2006. Analysis manual for standard table of food
 composition in Japan. 5th Edition. Kenpakusha Publishing, Tokyo, Japan. 228 pp.
- Yorio, N.C., Wheeler, R.M., Goins, G.D., Sanwo-Lewandowski, M.M., Mackowiak, C.L., Brown, C.S.,
 Sager, J.C., Stutte, G.W., 1998. Blue light requirements for crop plants used in bioregenerative life support
 systems. Life Supp. Bios. Sci. 5, 119-128.
- 615 Yoshiba, Y., Kiyosue, T., Katagiri, T., Ueda, H., Mizoguchi, T., Yamaguchi-Shinozaki, K., Wada, K., Harada,
- Y., Shinozaki, K., 1995. Correlation between the induction of a gene for delta 1-pyrroline-5-carboxylate
 synthetase and the accumulation of proline in Arabidopsis thaliana under osmotic stress. Plant J. 7, 751-
- 618 760.
- Yuen, G.Y., Schroth, M.N., Weinhold, A.R., Hancock, J.G., 1991. Effect of soil fumigation with methyl
 bromide and chloropicrin on root health and yield of strawberry. Plant Dis. 75, 416-420.
- Zhao, Y., Wu, L., Chu, L., Yang, Y., Li, Z., Azeem, S., Zhang, Z., Fang, C., Lin, W., 2015. Interaction of
 Pseudostellaria heterophylla with *Fusarium oxysporum* f. sp. heterophylla mediated by its root exudates in a
- 623 consecutive monoculture system. Sci. Rep. 5, 8197.
- 624 Zhen, W., Cao, K., Zhang, X., 2003. Simulation of autotoxicity of strawberry root exudates under continuous
- 625 cropping. Acta Phytoecol. Sin. 28, 828-832.

Table 1. Full strength "Enshi" nutrient solution

Chemicals	Amounts ^z (g/1000 L)
$Ca(NO_3)_2.4H_2O$	950
KNO ₃	810
MgSO ₄ .7H ₂ O	500
$NH_4H_2PO_4$	155
H_3BO_3	3
ZnSO ₄ .7H ₂ O	0.22
MnSO ₄ .4H2O	2
CuSO ₄ .5H ₂ O	0.05
Na ₂ MoO ₄ .2H ₂ O	0.02
<u>NaFe-EDTA</u>	<u>25</u>

^zAmounts of salts per 1000 L of tap water (Hori, 1966).

Table 2. Peak wavelength and full width at half maximum (FWHM) of three LEDs used in the study.

				_	
<u>LED typ</u>	pes	Peak wavelength (nm)	<u>FWHM (nm)</u>		
$\mathbf{D} \cdot \mathbf{D} = 9.2$	<u>Red (8)</u>	<u>659.4</u>	<u>15.1</u>		
$\underline{\mathbf{K}}$: \mathbf{D} = 0:2	<u>Blue (2)</u>	<u>445.6</u>	<u>15.2</u>		
▲	<u>Red (5)</u>	<u>659.4</u>	<u>14.6</u>		Formatted: Font: 4 pt
$\underline{\mathbf{K}}$. D = \mathbf{J} . \mathbf{J}	<u>Blue (5)</u>	<u>445.6</u>	<u>15.9</u>		Formatted Table
R:B = 2:8	<u>Red (2)</u>	<u>658.1</u>	<u>13.8</u>		Formatted: Font: 4 pt
	<u>Blue (8)</u>	<u>445.6</u>	<u>16.5</u>		

Formatted: Centered

Amino acid/Lig	nt quality	Number	Maximum leaf	Maximum leaf	Longest root	Crown	SPAD	DW of leaf	DW of crown	DW of root
	n quanty	of leaves plant	length (cm)	width (cm)	length (cm)	diameter (mm)		(g)	(g)	(g)
Effect of amino-	acid									
Water		20.0-а	<u>20.3 b</u>	13.9	29.8	<u>23.3 b</u>	50.2	11.5	1.9	<u>2.9</u>
Hydroxyproline		18.8 b	21.0 a	14.8	29.7	20.9 b	51.2	11.5	1.8	2.7
Glutamic acid		16.8 c	20.5 а	15.0	33.8	24.8 a	50.1	10.6	1.7	3.0
Effect of light au	ality									
Fluorescent lame	•	16.3 b	25.0 a	16.3	30.1	17.9 c	51.2	10.6 c	1.4 c	2.7 c
$\frac{1}{1}$		21.3 a	19.3 ab	13.7	31.4	27.4 a	50.5	13.3 a	2.7 a	3.7 a
$\frac{1}{1} \frac{1}{1} \frac{1}$		19.3 ab	18.3 h	13.7	31.8	23.3 h	51.0	11.3 h	1.7 b	2.9 h
$\frac{1}{1} \frac{1}{1} \frac{1}$		17.0 b	19.7 ab	14.6	30.9	23.4 b	<u>49.8</u>	<u>9.5 d</u>	1.3 d	$\frac{2.0 \text{ d}}{2.0 \text{ d}}$
Interaction effect	of amino acid and									
light quality										
Water	Fluorescent lamp	19.0 abc	24.0 ab	16.0	28.1	17.2 j	50.4	11.0 b	1.5 c	2.4 c
	$\frac{1}{1}$	21.0 ab	19.0 ab	13.6	27.8	25.4 e	<u>49.8</u>	13.0 ab	2.8 a	4 .1 a
	$\frac{1}{1}$	19.0 abe	18.0 b	13.0	33.2	23.7 f	51.5	12.0 abe	1.8 b	3.1 abe
	<u>LED (R:B = 2:8)</u>	21.0 ab	20.0 ab	12.8	29.9	27.0 c	<u>49.2</u>	10.0 с	1.4 e	1.9 d
Hydroxyproline	Fluorescent lamp	16.0 bc	26.0 a	16.7	28.1	17.9 hi	52.9	11.0 b	1.5 c	2.8 bc
J	$\frac{1}{1} \frac{1}{1} \frac{1}$	24.0 a	20.0 ab	13.4	31.7	$\frac{27.9 \text{ h}}{100000000000000000000000000000000000$	51.0	14.0 a	2.9 a	3.2 abe
	$\frac{1}{1} \frac{1}{1} \frac{1}$	19.0 abc	18.0 b	13.3	27.4	20.2 g	51.7	11.0 b	1.6 b	2.8 be
	$\frac{1}{1} \frac{ED}{R} (R \cdot R = 2 \cdot 8)$	16 bc	20.0 ab	15.8	31.5	17.6 ii	49.3	10.0 c	1.2 c	1.9 d
	()									
Glutamic acid	Fluorescent lamp	14.0 c	25.0 ab	16.2	34.1	18.5 h	50.3	9.7 d	1.2 c	3.0 bc
	$\frac{1}{1} \frac{1}{1} \frac{1}$	20.0 ab	19.0 ab	14.0	34.8	28.8 a	50.6	13.0 ab	2.4 ab	3.7 ab
	$\frac{1}{1} \frac{1}{1} \frac{1}$	20.0 ab	19.0 ab	14.6	34.9	$\frac{26.1 \text{ d}}{26}$	50.0	11.0 b	1.7 b	2.8 be
	$\frac{1}{1} \frac{ED}{R} (R \cdot R = 2 \cdot 8)$	14.0 c	19.0 ab	15.2	31.2	25.7 de	49.6	<u>- 8.6 d</u>	1.3 c	236
Significance	()									
	Amino acid	<u>*</u>	<u>*</u>	NS	NS	<u>*</u>	NS	NS	NS	NS
	Light quality	<u>*</u>	<u>*</u>	NS	NS	<u>*</u>	NS	<u>*</u>	<u>*</u>	*
	Interaction	<u>*</u>	<u>*</u>	NS	NS	<u>*</u>	NS	<u>*</u>	<u>*</u>	<u>*</u>

_Table 2. Effects of light quality and amino acids spray on the growth of strawberry grown under heat stress condition.

Note: Means within column followed by the same letters are not significant according to the Tukey's Test at P < 0.05, NS = Not significant, *= Significant at the 5% level and DW = Dry weight.

		Number	Maximum	Maximum	Longest root	Crown	<u>SPAD</u>	<u>DW of</u>	<u>DW of</u>	<u>DW of</u>	Total plant
Light quality and amino	acid	of leaves	leaf length	leaf width	length (cm)	diameter		leaf	<u>crown</u>	root	<u>DW (g)</u>
		plant ⁻¹	<u>(cm)</u>	<u>(cm)</u>		<u>(mm)</u>		<u>(g)</u>	<u>(g)</u>	<u>(g)</u>	
<u>Light quality</u>		1 4 9 1 7			20.4	15.0		10.5			
Fluorescent lamp		<u>16.3 b²</u>	<u>25.0 a</u>	<u>16.3 a</u>	<u>30.1 a</u>	<u>17.9 c</u>	<u>51.2 a</u>	<u>10.6 c</u>	<u>1.4 c</u>	$\frac{2.7 c}{2.7 c}$	<u>14.7 c</u>
<u>LED (R:B = 8:2)</u>		<u>21.3 a</u>	<u>19.3 ab</u>	<u>13.7 a</u>	<u>31.4 a</u>	<u>27.4 a</u>	<u>50.5 a</u>	<u>13.3 a</u>	<u>2.7 a</u>	<u>3.7 a</u>	<u>19.7 a</u>
<u>LED (R:B = 5:5)</u>		<u>19.3 ab</u>	<u>18.3 b</u>	<u>13.7 a</u>	<u>31.8 a</u>	<u>23.3 b</u>	<u>51.0 a</u>	<u>11.3 b</u>	<u>1.7 b</u>	<u>2.9 b</u>	<u>15.9 b</u>
<u>LED (R:B = 2:8)</u>		<u>17.0 b</u>	<u>19.7 ab</u>	<u>14.6 a</u>	<u>30.9 a</u>	<u>23.4 b</u>	<u>49.8 a</u>	<u>9.5 d</u>	<u>1.3 d</u>	<u>2.0 d</u>	<u>12.9 d</u>
Amino acid											
Water		20.0 a	20.3 b	13.9 a	29.8 a	23.3 b	50.2 a	11.5 a	1.9 a	2.9 a	16.3 a
Hydroxyproline		18.8 b	21.0 a	14.8 a	29.7 a	20.9 b	51.2 a	11.5 a	1.8 a	2.7 a	16.0 a
Glutamic acid		16.8 c	20.5 a	15.0 a	33.8 a	24.8 a	50.1 a	10.6 a	1.7 a	3.0 a	15.2 a
Light quality x amino a	<u>cid</u>	10.0.1				15.0.1	50 4				
Fluorescent lamp	Water	<u>19.0 abc</u>	<u>24.0 ab</u>	<u>16.0 a</u>	<u>28.1 a</u>	<u>17.2</u>	<u>50.4 a</u>	<u>11.0 b</u>	<u>1.5 c</u>	<u>2.4 c</u>	<u>14.9 d</u>
	Hydroxyproline	<u>16.0 bc</u>	<u>26.0 a</u>	<u>16.7 a</u>	<u>28.1 a</u>	<u>17.9 hi</u>	<u>52.9 a</u>	<u>11.0 b</u>	<u>1.5 c</u>	2.8 bc	<u>15.3 c</u>
	Glutamic acid	<u>14.0 c</u>	<u>25.0 ab</u>	<u>16.2 a</u>	<u>34.1 a</u>	<u>18.5 h</u>	<u>50.3 a</u>	<u>9.7 d</u>	<u>1.2 c</u>	<u>3.0 bc</u>	<u>13.9 e</u>
LED $(R:B = 8:2)$	Water	21.0 ab	19.0 ab	13.6 a	27.8 a	25.4 e	49.8 a	13.0 ab	2.8 a	4.1 a	19.9 a
	Hydroxyproline	24.0 a	20.0 ab	13.4 a	31.7 a	27.9 b	51.0 a	14.0 a	2.9 a	3.2 abc	20.1 a
	Glutamic acid	<u>20.0 ab</u>	19.0 ab	14.0 a	<u>34.8 a</u>	<u>28.8 a</u>	<u>50.6 a</u>	13.0 ab	2.4 ab	3.7 ab	<u>19.9 a</u>
	***	10.0.1	10.01	12.0		22.7.6		10.0.1	1.01	2.1.1	1601
<u>LED (R:B = 5:5)</u>	Water	<u>19.0 abc</u>	<u>18.0 b</u>	<u>13.0 a</u>	<u>33.2 a</u>	$\frac{23.71}{20.2}$	<u>51.5 a</u>	<u>12.0 abc</u>	<u>1.8 b</u>	<u>3.1 abc</u>	<u>16.9 b</u>
	Hydroxyproline	<u>19.0 abc</u>	<u>18.0 b</u>	<u>13.5 a</u>	<u>21.4 a</u>	$\frac{20.2 \text{ g}}{26.1 \text{ l}}$	<u>51.7 a</u>	<u>11.0 b</u>	<u>1.6 D</u>	<u>2.8 bc</u>	<u>15.4 c</u>
	Glutamic acid	<u>20.0 ab</u>	<u>19.0 ab</u>	<u>14.6 a</u>	<u>34.9 a</u>	<u>26.1 d</u>	<u>50.0 a</u>	<u>11.0 b</u>	<u>1.7 D</u>	<u>2.8 bc</u>	<u>15.5 c</u>
<u>LED (R:B = 2:8)</u>	Water	<u>21.0 ab</u>	<u>20.0 ab</u>	<u>12.8 a</u>	<u>29.9 a</u>	<u>27.0 c</u>	<u>49.2 a</u>	<u>10.0 c</u>	<u>1.4 c</u>	<u>1.9 d</u>	<u>13.3 f</u>
	Hydroxyproline	16.0 bc	20.0 ab	15.8 a	<u>31.5 a</u>	17.6 ij	49.3 a	10.0 c	1.2 c	1.9 d	13.1 f
	Glutamic acid	<u>14.0 c</u>	<u>19.0 ab</u>	<u>15.2 a</u>	<u>31.2 a</u>	<u>25.7 de</u>	<u>49.6 a</u>	<u>8.6 d</u>	<u>1.3 c</u>	<u>2.3 c</u>	<u>12.2 g</u>
g: :/:											
<u>Significance</u>		*	*	NS	NS	*	NS	*	*	*	*
Amino acid		*	*	IND NC	IND NC	*	IND NC	NC	NC	NC	NC
Light quality X amino a	aid	<u>-</u> *	<u>-</u> *	IND NC	IND NS	*	IND NS	*	*	*	*
Light quanty X ammo a	uu	-	<u> </u>	110	<u>671</u>	-	011	<u> </u>	<u> </u>	<u> </u>	<u> </u>

Table 3. Effects of light quality and amino acids spray on the growth of strawberry grown under heat stress condition.

²Means within column for main-plot factor (light quality), sub-plot factor (amino acid) and their interaction having the same letters are not significantly different according to the Tukey's Test at $\frac{P < 0.05}{\text{Significant and NSNot significant at 5\% level.}}$ $\frac{DW = Dry weight.}{2}$

Amino acid/ Ligh	it quality	Number of days anthesis	Number of days to fruit ripening	Number of flowers plant ⁻¹	Number of fruit plant ⁻¹	Average fruit weight (g)	Fruit yield (g plant ⁻¹)	Total soluble solids of fruits (%)	Citric acidity of fruits (%)	Ascorbic acid content of fruits (ppm)
Effect of amino	acid									
Water		8.1	34.2	19.7 с	2.9 с	2.3 c	7.0-e	4.9	0.70	24.7 b
Hydroxyproline		8.3	33.2	28.9 b	3.6 b	2.6 a	9.4 b	4.9	0.62	26.5 ab
Glutamic acid		7.5	34.0	35.2 a	4 .5 a	<u>2.4 b</u>	11.4 a	5.0	0.73	27.8 a
Trees of all all and an										
Elucroscont lamp	lanty	8.6	25.2	28.2 h	446	25h	10.8 h	160	0.70	24.0 b
$1 \text{ ED} (\mathbf{P} \cdot \mathbf{P} = 8 \cdot 2)$		8.5	22.8	44.0 a	570	2.2 0	15.0 a	560	0.62	28.7 0
$\frac{1}{1} \frac{1}{1} \frac{1}$		75	32.6	21.8 a	$\frac{5.7 a}{2.4 a}$	$\frac{2.7 \text{ a}}{2.4 \text{ a}}$	580	5.0 h	0.71	24.8 h
$\frac{\text{LED}(\text{R}.\text{B} = 3.3)}{\text{LED}(\text{P}.\text{P} = 3.8)}$		7.2	24.7	1744	2.1.0	2.1.4	3.0 c 4.8 d	4.4.d	0.71	1770
EED(R.D = 2.0)		7.5	54.7	17. 4 u	2.2 0	2.1 0	4.0 0		0.71	17.70
Interaction effect	of amino acid and									
Water	Eluorescent lamp	8.0	26 5	<u>190f</u>	364	240	<u>80f</u>	4 <u>6f</u>	0.74	$\frac{21.0}{21.0}$ ed
, alor	$\frac{1}{1} \frac{1}{1} \frac{1}$	10.0	33.0	$\frac{21.0 \text{ ef}}{21}$	4.3 c	$\frac{2.7 e}{2.7 e}$	$\frac{11.6 \text{ d}}{11.6 \text{ d}}$	5.6 c	0.58	39.2 a
	LED(R:B = 5:5)	6.6	31.3	22.6 c	2.0 zh	2.1 h	4 .3 ii	5.0 e	0.86	21.8 cd
	LED (R:B = 2:8)	7.8	36.0	16.0 g	1.7 h	2.1 h	3.4 j	4.4 g	0.63	16.6 d
Hydroxyproline	Fluorescent lamp	8.4	35.0	31.0 d	4.0 с	2.8 b	10.3 e	3.7 h	0.63	24.0 bc
	$\frac{\text{LED} (\text{R:B} = 8:2)}{\text{LED} (\text{R:B} = 8:2)}$	8.0	33.2	48.0 b	5.7 b	2.7 c	15.5-b	5.5 d	0.58	39.0 a
	$\frac{\text{LED} (\text{R:B} = 5:5)}{\text{LED} (\text{R:B} = 5:5)}$	8.6	32.5	22.6 e	2.5 ef	2.6 d	6.5 g	4.7 f	0.63	24.4 be
	LED (R:B = 2:8)	8.0	32.0	13.8 g	2.3 fg	2.2 g	5.1 hi	4.4-g	0.63	18.6 d
Glutamic acid	Fluorescent lamp	9.4	34.4	35.0-е	5.7 b	2.3 f	13.2 c	3.7 h	0.74	27.0 b
	$\frac{\text{LED}(\text{R:B} = 8:2)}{1}$	7.4	31.5	63.0 a	7.0 a	2.9 a	20.1 a	6.1 a	0.7	37.8 a
	LED (R:B = 5:5)	7.2	34.0	20.0 cf	2.7 е	2.4 e	6.5 g	6.0 b	0.63	28.2 b
	$\frac{\text{LED} (\text{R:B} = 2:8)}{1}$	6.0	36.0	22.5-е	2.7 е	2.1 h	5.8 gh	3.7 h	0.86	18.0 d
Significance							-			
	Amino acid	NS	NS	*	<u>*</u>	*	*	NS	NS	<u>*</u>
	Light quality	NS	NS	*	<u>*</u>	*	*	<u>*</u>	NS	<u>*</u>
	Interaction	NS	NS	<u>*</u>	<u>*</u>	*	<u>*</u>	<u>*</u>	NS	<u>*</u>

Table 3. Effects of light quality and amino acids spray on the yield attributes, yield and fruit quality of strawberry grown under heat stress condition.

Note: Means within column followed by the same letters are not significant according to the Tukey's Test at P<0.05, NS - Not significant, *= Significant at the 5% level

Light quality and an	nino acid	Number of days to anthesis	Number of days to fruit ripening	<u>Number of</u> flowers plant ⁻¹	<u>Number of</u> fruit plant ⁻¹	<u>Average</u> <u>fruit weight</u> (g)	Total soluble solids of fruits (%)	Citric acidity of fruits (%)	<u>Ascorbic acid</u> <u>content of fruits</u> (ppm)
$\frac{Light \ quality}{Fluorescent \ lamp}$ $\frac{LED \ (R:B = 8:2)}{LED \ (R:B = 5:5)}$ $\frac{LED \ (R:B = 2:8)}{LED \ (R:B = 2:8)}$		<u>8.6 a^z</u> <u>8.5 a</u> <u>7.5 a</u> <u>7.3 a</u>	<u>35.3 a</u> <u>32.8 a</u> <u>32.6 a</u> <u>34.7 a</u>	<u>28.3 b</u> <u>44.0 a</u> <u>21.8 c</u> <u>17.4 d</u>	<u>4.4 b</u> <u>5.7 a</u> <u>2.4 c</u> <u>2.2 d</u>	<u>2.5 b</u> <u>2.7 a</u> <u>2.4 c</u> <u>2.1 d</u>	<u>4.6 c</u> <u>5.6 a</u> <u>5.0 b</u> <u>4.4 d</u>	0.70 0.62 0.71 0.71	24.0 b 38.7 a 24.8 b 17.7 c
<u>Amino acid</u> Water Hydroxyproline Glutamic acid		<u>8.1 a</u> <u>8.3 a</u> <u>7.5 a</u>	<u>34.2 a</u> <u>33.2 a</u> <u>34.0 a</u>	<u>19.7 c</u> <u>28.9 b</u> <u>35.2 a</u>	<u>2.9 c</u> <u>3.6 b</u> <u>4.5 a</u>	<u>2.3 c</u> <u>2.6 a</u> <u>2.4 b</u>	<u>4.9</u> <u>4.9</u> <u>5.0</u>	0.70 0.62 0.73	24.7 b 26.5 ab 27.8 a
<u>Light quality x amino</u> <u>Fluorescent lamp</u>	<u>o acid</u> <u>Water</u> <u>Hydroxyproline</u> <u>Glutamic acid</u>	<u>8.0 a</u> <u>8.4 a</u> <u>9.4 a</u>	<u>36.5 a</u> <u>35.0 a</u> <u>34.4 a</u>	<u>19.0 f</u> <u>31.0 d</u> <u>35.0 c</u>	<u>3.6 d</u> <u>4.0 c</u> <u>5.7 b</u>	$\frac{2.4 \text{ e}}{2.8 \text{ b}}$ $\frac{2.3 \text{ f}}{2.3 \text{ f}}$	<u>4.6 f</u> <u>3.7 h</u> <u>3.7 h</u>	<u>0.74</u> <u>0.63</u> <u>0.74</u>	<u>21.0 cd</u> <u>24.0 bc</u> <u>27.0 b</u>
<u>LED (R:B = 8:2)</u>	<u>Water</u> Hydroxyproline Glutamic acid	<u>10.0 a</u> <u>8.0 a</u> <u>7.4 a</u>	<u>33.0 a</u> <u>33.2 a</u> <u>31.5 a</u>	<u>21.0 ef</u> <u>48.0 b</u> <u>63.0 a</u>	<u>4.3 c</u> <u>5.7 b</u> <u>7.0 a</u>	<u>2.7 c</u> <u>2.7 c</u> <u>2.9 a</u>	<u>5.6 c</u> <u>5.5 d</u> <u>6.1 a</u>	<u>0.58</u> <u>0.58</u> <u>0.7</u>	<u>39.2 a</u> <u>39.0 a</u> <u>37.8 a</u>
<u>LED (R:B = 5:5)</u>	<u>Water</u> Hydroxyproline Glutamic acid	<u>6.6 a</u> <u>8.6 a</u> <u>7.2 a</u>	<u>31.3 a</u> <u>32.5 a</u> <u>34.0 a</u>	<u>22.6 e</u> <u>22.6 e</u> <u>20.0 ef</u>	<u>2.0 gh</u> <u>2.5 ef</u> <u>2.7 e</u>	<u>2.1 h</u> <u>2.6 d</u> <u>2.4 e</u>	<u>5.0 e</u> <u>4.7 f</u> <u>6.0 b</u>	<u>0.86</u> <u>0.63</u> <u>0.63</u>	21.8 cd 24.4 bc 28.2 b
<u>LED (R:B = 2:8)</u>	<u>Water</u> Hydroxyproline Glutamic acid	<u>7.8 a</u> <u>8.0 a</u> <u>6.0 a</u>	<u>36.0 a</u> <u>32.0 a</u> <u>36.0 a</u>	<u>16.0 g</u> <u>13.8 g</u> <u>22.5 e</u>	<u>1.7 h</u> <u>2.3 fg</u> <u>2.7 e</u>	<u>2.1 h</u> <u>2.2 g</u> <u>2.1 h</u>	<u>4.4 g</u> <u>4.4 g</u> <u>3.7 h</u>	<u>0.63</u> <u>0.63</u> <u>0.86</u>	<u>16.6 d</u> <u>18.6 d</u> <u>18.0 d</u>
<u>Significance</u> <u>Light quality</u> <u>Amino acid</u> Light quality x aming	<u>o acid</u>	<u>NS</u> <u>NS</u> <u>NS</u>	<u>NS</u> NS NS	* * - *	* _ * _	* - *	* <u>NS</u> *	<u>NS</u> NS NS	* - * -

Table 4. Effects of light quality and amino acids spray on the yield attributes and fruit quality of strawberry grown under heat stress condition.

²Means within column for main-plot factor (light quality), sub-plot factor (amino acid) and their interaction having the same letters are not significantly different according to the Tukey's Test at <u>*P* <0.05.</u> *Significant and ^{NS}Not significant at 5% level.

		Fe (mg k	g ⁺ -D₩)	Mg (mg g ⁻¹ -1	DW)	K (mg g ⁻¹ -D	₩)	Ca (mg g	⁺ DW)
Annio acia/ Ligni q	uunty	Leaves	Crown	Leaves	Crown	Leaves	Crown	Leaves	Crown
Effect of amino acid	ł								
Water		145 a	180	6.6	7.5	39.7	35.4	32.6	2.9
Hydrox yproline		120 b	183	6.3	7.1	39.1	34.5	31.0	3.0
Glutamic acid		135 ab	186	6.7	7.3	39.7	36.9	31.6	3.0
Effect of light quali	y								
Fluorescent lamp	-	203-а	239-a	7.4 a	8.7 а	40.5 b	37.4	30.5	2.6 d
$\frac{1}{1} \frac{1}{1} \frac{1}$		154 b	221-a	6.5 b	6.5 c	35.1 d	31.2	32.6	2.8 с
$\frac{\text{LED}(\text{R:B} = 5:5)}{1}$		- 87-e	122 b	6.1 e	6.5 c	39.1 e	35.8	33.8	3.0 b
$\frac{\text{LED} (\text{R:B} = 2:8)}{\text{LED} (\text{R:B} = 2:8)}$		-87-e	148 b	6.0 c	7.5 b	43.4 a	37.8	30.1	3.6 a
Interaction effect of	light and amino acid								
Water	Fluorescent lamp	215 a	225 abc	7.4 a	9.5 a	40.3-ab	34.0	31.2	3.0 ab
	$\frac{\text{LED} (\text{R:B} = 8:2)}{1}$	188 ab	254 ab	6.7 ab	6.5 c	35.7 b	31.1	30.3	2.5 ab
	LED (R:B = 5:5)	86 b	105 d	6.3 b	6.5 c	39.7 ab	38.7	34.8	2.7 ab
	LED (R:B = 2:8)	89 b	135c	6.0 b	7.5 bc	4 3.1 a	37.6	34.2	3.5 ab
Hydroxyproline	Fluorescent lamp	184 ab	272 a	7.3 a	8.5 ab	40.4 ab	37.8	31.5	2.5 ab
	<u>LED (R:B = 8:2)</u>	123 ab	196 abc	6.2 b	6.3 c	<u>34.2 b</u>	29.5	33.6	2.9 ab
	LED(R:B = 5:5)	86 b	103 d	5.7 b	6.2 c	37.8 ab	33.1	31.0	3.0 ab
	LED(R:B = 2:8)	84 b	161 b	5.9 b	7.4 bc	4 4.2 a	37.3	27.9	3.6 a
Glutamic acid	Fluorescent lamp	209-а	221-abe	7.6 a	8.3 ab	40.7 а	40.5	28.8	2.1 b
	<u>LED (R:B = 8:2)</u>	150 ab	218 abc	6.6 ab	6.8 bc	<u>35.5 b</u>	33.1	33.7	3.0 ab
	LED(R:B = 5:5)	88 b	159-е	6.4 ab	6.7 be	39.7 ab	35.6	35.6	3.2 ab
	$\frac{1}{1}$	93-b	149 c	6.1 b	7.6 be	42.8 a	38.5	28.3	3.7 a
Significance									
-	Amino acid	<u>*</u>	NS	NS	NS	NS	NS	NS	NS
	Light quality	*	<u>*</u>	<u>*</u>	<u>*</u>	<u>*</u>	NS	NS	<u>*</u>
	Interaction	*	*	<u>*</u>	<u>*</u>	<u>*</u>	NS	NS	*

Table 4. Effects of light quality and amino acids spray on nutrients content of strawberry plants grown under heat stress condition.

Note: Means within column having the same letters are not significant according to the Tukey's test at P <0.05. NS =Not significant and * = Significant at the 5% level. DW = Dry weight.

Tinha multimental and	1	Fe (mg kg ⁻¹ DW)		Mg (mg g ⁻¹ DW)	<u>K (mg g⁻¹ DW)</u>		<u>Ca (mg g⁻¹ DW)</u>	
Light quanty and am	ino acid	Leaves	Crown	Leaves	Crown	Leaves	Crown	Leaves	Crown
$\frac{Light \ quality}{Fluorescent \ lamp}$ $\frac{LED \ (R:B = 8:2)}{LED \ (R:B = 5:5)}$ $\frac{LED \ (R:B = 2:8)}{LED \ (R:B = 2:8)}$		<u>203 a^z</u> <u>154 b</u> <u>87 c</u> <u>87 c</u>	<u>239 a</u> <u>221 a</u> <u>122 b</u> <u>148 b</u>	7.4 a 6.5 b 6.1 c 6.0 c	<u>8.7 a</u> <u>6.5 c</u> <u>6.5 c</u> <u>7.5 b</u>	<u>40.5 b</u> <u>35.1 d</u> <u>39.1 c</u> <u>43.4 a</u>	<u>37.4 a</u> <u>31.2 a</u> <u>35.8 a</u> <u>37.8 a</u>	<u>30.5 a</u> <u>32.6 a</u> <u>33.8 a</u> <u>30.1 a</u>	<u>2.6 d</u> <u>2.8 c</u> <u>3.0 b</u> <u>3.6 a</u>
<u>Amino acid</u> <u>Water</u> <u>Hydroxyproline</u> <u>Glutamic acid</u>		<u>145 a</u> <u>120 b</u> <u>135 ab</u>	<u>180 a</u> <u>183 a</u> <u>186 a</u>	<u>6.6 a</u> <u>6.3 a</u> <u>6.7 a</u>	<u>7.5 a</u> <u>7.1 a</u> 7.3 a	<u>39.7 a</u> <u>39.1 a</u> <u>39.7 a</u>	<u>35.4 a</u> <u>34.5 a</u> <u>36.9 a</u>	<u>32.6 a</u> <u>31.0 a</u> <u>31.6 a</u>	<u>2.9 a</u> <u>3.0 a</u> <u>3.0 a</u>
<u>Light quality x amino</u> Fluorescent lamp	<u>acid</u> <u>Water</u> <u>Hydroxyproline</u> <u>Glutamic acid</u>	<u>215 a</u> <u>184 ab</u> 209 a	<u>225 abc</u> <u>272 a</u> 221 abc	<u>7.4 a</u> 7.3 a 7.6 a	<u>9.5 a</u> <u>8.5 ab</u> <u>8.3 ab</u>	<u>40.3 ab</u> <u>40.4 ab</u> <u>40.7 a</u>	<u>34.0 a</u> <u>37.8 a</u> <u>40.5 a</u>	<u>31.2 a</u> <u>31.5 a</u> <u>28.8 a</u>	<u>3.0 ab</u> <u>2.5 ab</u> <u>2.1 b</u>
<u>LED (R:B = 8:2)</u>	<u>Water</u> <u>Hydroxyproline</u> <u>Glutamic acid</u>	<u>188 ab</u> <u>123 ab</u> <u>150 ab</u>	<u>254 ab</u> <u>196 abc</u> <u>218 abc</u>	<u>6.7 ab</u> <u>6.2 b</u> <u>6.6 ab</u>	<u>6.5 c</u> <u>6.3 c</u> <u>6.8 bc</u>	<u>35.7 b</u> <u>34.2 b</u> <u>35.5 b</u>	<u>31.1 a</u> <u>29.5 a</u> <u>33.1 a</u>	<u>30.3 a</u> <u>33.6 a</u> <u>33.7 a</u>	<u>2.5 ab</u> <u>2.9 ab</u> <u>3.0 ab</u>
<u>LED (R:B = 5:5)</u>	<u>Water</u> Hydroxyproline Glutamic acid	<u>86 b</u> <u>86 b</u> <u>88 b</u>	<u>105 d</u> <u>103 d</u> <u>159 c</u>	<u>6.3 b</u> <u>5.7 b</u> <u>6.4 ab</u>	<u>6.5 c</u> <u>6.2 c</u> <u>6.7 bc</u>	<u>39.7 ab</u> <u>37.8 ab</u> <u>39.7 ab</u>	<u>38.7 a</u> <u>33.1 a</u> <u>35.6 a</u>	<u>34.8 a</u> <u>31.0 a</u> <u>35.6 a</u>	<u>2.7 ab</u> <u>3.0 ab</u> <u>3.2 ab</u>
<u>LED (R:B = 2:8)</u>	<u>Water</u> <u>Hydroxyproline</u> <u>Glutamic acid</u>	<u>89 b</u> <u>84 b</u> 93 b	<u>135 c</u> <u>161 b</u> <u>149 c</u>	<u>6.0 b</u> <u>5.9 b</u> <u>6.1 b</u>	<u>7.5 bc</u> <u>7.4 bc</u> <u>7.6 bc</u>	<u>43.1 a</u> <u>44.2 a</u> <u>42.8 a</u>	<u>37.6 a</u> <u>37.3 a</u> <u>38.5 a</u>	<u>34.2 a</u> <u>27.9 a</u> <u>28.3 a</u>	<u>3.5 ab</u> <u>3.6 a</u> <u>3.7 a</u>
<u>Significance</u> Light quality <u>Amino acid</u> Light quality x amino	o acid	* * *	* <u>NS</u> *	* <u>NS</u> *	* <u>NS</u> *	* <u>NS</u> *	<u>NS</u> NS NS	<u>NS</u> <u>NS</u> <u>NS</u>	* <u>NS</u> *

Table 5. Effects of light quality and amino acids spray on nutrients content of strawberry plants grown under heat stress condition.

²Means within column for main-plot factor (light quality), sub-plot factor (amino acid) and their interaction having the same letters are not significantly different according to the Tukey's test at P < 0.05, ^{*}Significant and ^{NS}Not significant at 5% level, <u>DW = Dry weight</u>.

		No. of leaves	Leaf length	Leaf width	Crown diameter	Root length	SPAD	Dry weight	(g plant⁻¹)	
Glu/LED quantity		plant ⁻¹	(em)	(em)	(mm)	(cm)		Leaf	Crown	Root
Effect of Glu										
-		18.7	19.9	15.1	18.3	4 7.8	4 8.7	16.4	3.3	2.4
+		20.4	20.3	16.0	21.5	55.6	49.8	16.9	3.8	2.7
Effect of LED qua	intity									
Low		13.9 e	21.4	15.3	14.8 c	41.8 b	45.6	10.9 с	1.8 c	1.7 e
Medium		20.0 b	20.1	16.8	20.3 b	54.8 ab	51.1	14.9 b	2.8 b	2.1 b
High		24.8 a	18.8	14.8	24.7 a	58.6 a	51.1	24.2 a	6.0 a	4.0 a
Interaction effect of	of Glu and									
LED quantity										
Low	-	12.4 c	20.6	14.9	13.5 c	36.5 b	4 5.8	10.9 b	1.7 c	1.6 b
	+	15.4 bc	22.2	15.6	16.1 c	4 7.0 ab	4 5.4	11.0 b	1.9 c	1.7 b
Medium	_	19.6 abc	18.8	16.0	18.7 b	52.2 ab	4 9.8	<u>15.5 b</u>	2.3 bc	1.8 b
	+	20.4 abe	21.3	17.5	21.8 b	57.4 a	52.4	14.3 b	3.3 b	2.4 b
High	_	24.2 ab	20.2	14.5	22.7 a	54.6 a	50.6	22.9 a	5.8 a	3.9 a
8	+	25.4 a	17.4	15.0	26.7 a	62.5 a	51.6	25.4 a	6.1 a	4.1 a
Significance										
Glu		NS	NS	NS NS	NS	NS	NS	NS	NS	NS
- LED quantity		<u>*</u>	NS	NS NS	<u>*</u>	<u>*</u>	NS	<u>*</u>	<u>*</u>	<u>*</u>
Interaction		<u>*</u>	NS	NS	<u>*</u>	<u>*</u>	NS	<u>*</u>	<u>*</u>	<u>*</u>

Table 5. Effects of LED light quantities and Glutamic acid on the growth of strawberry plant grown in controlled environment facilities.

Note: Values in a column followed by different letter(s) differ significantly by Tukey's test. Significant at the 5% level (*), Not significant (NS). LED quantity low, medium and high are 149, 269 and 567 μ mol m⁻²s⁻⁴.

Glutamic acid applied (+), not applied (-).

LED intensity a	nd Glutamic acid	No. of leaves	Leaf length	Leaf width	Crown diameter	Root length	<u>SPAD</u>	Dry weigh	nt (g plant ⁻¹)		Total plant
<u>LED intensity a</u>	nu Olutanne aciu	<u>plant⁻¹</u>	<u>(cm)</u>	<u>(cm)</u>	<u>(mm)</u>	<u>(cm)</u>		<u>Leaf</u>	<u>Crown</u>	<u>Root</u>	<u>DW (g)</u>
LED intensity ^z											
Low		<u>13.9 c^y</u>	<u>21.4 a</u>	<u>15.3 a</u>	<u>14.8 c</u>	<u>41.8 b</u>	<u>45.6 a</u>	<u>10.9 c</u>	<u>1.8 c</u>	<u>1.7 c</u>	<u>14.4 c</u>
Medium		<u>20.0 b</u>	<u>20.1 a</u>	<u>16.8 a</u>	<u>20.3 b</u>	<u>54.8 ab</u>	<u>51.1 a</u>	<u>14.9 b</u>	<u>2.8 b</u>	<u>2.1 b</u>	<u>19.8 b</u>
<u>High</u>		<u>24.8 a</u>	<u>18.8 a</u>	<u>14.8 a</u>	<u>24.7 a</u>	<u>58.6 a</u>	<u>51.1 a</u>	<u>24.2 a</u>	<u>6.0 a</u>	<u>4.0 a</u>	<u>34.1 a</u>
<u>Glutamic acid^x</u>											
<u>Glu (-)</u>		<u>18.7 a</u>	<u>19.9 a</u>	<u>15.1 a</u>	<u>18.3 a</u>	<u>47.8 a</u>	<u>48.7 a</u>	<u>16.4 a</u>	<u>3.3 a</u>	<u>2.4 a</u>	<u>22.1 a</u>
<u>Glu (+)</u>		<u>20.4 a</u>	<u>20.3 a</u>	<u>16.0 a</u>	<u>21.5 a</u>	<u>55.6 a</u>	<u>49.8 a</u>	<u>16.9 a</u>	<u>3.8 a</u>	<u>2.7 a</u>	<u>23.4 a</u>
LED intensity X	Glutamic acid										
Low	<u>Glu (-)</u>	<u>12.4 c</u>	<u>20.6 a</u>	<u>14.9 a</u>	<u>13.5 c</u>	<u>36.5 b</u>	<u>45.8 a</u>	<u>10.9 b</u>	<u>1.7 c</u>	<u>1.6 b</u>	<u>14.2 d</u>
	<u>Glu (+)</u>	<u>15.4 bc</u>	<u>22.2 a</u>	<u>15.6 a</u>	<u>16.1 c</u>	<u>47.0 ab</u>	<u>45.4 a</u>	<u>11.0 b</u>	<u>1.9 c</u>	<u>1.7 b</u>	<u>14.6 d</u>
Medium	<u>Glu (-)</u>	<u>19.6 abc</u>	<u>18.8 a</u>	<u>16.0 a</u>	<u>18.7 b</u>	<u>52.2 ab</u>	<u>49.8 a</u>	<u>15.5 b</u>	<u>2.3 bc</u>	<u>1.8 b</u>	<u>19.6 c</u>
	<u>Glu (+)</u>	20.4 abc	<u>21.3 a</u>	<u>17.5 a</u>	<u>21.8 b</u>	<u>57.4 a</u>	<u>52.4 a</u>	14.3 b	<u>3.3 b</u>	<u>2.4 b</u>	<u>20.0 c</u>
High	Glu (-)	24.2 ab	20.2 a	14.5 a	22.7 a	54.6 a	50.6 a	22.9 a	5.8 a	3.9 a	32.6 b
	<u>Glu (+)</u>	<u>25.4 a</u>	<u>17.4 a</u>	15.0 a	<u>26.7 a</u>	<u>62.5 a</u>	<u>51.6 a</u>	25.4 a	<u>6.1 a</u>	<u>4.1 a</u>	<u>35.6 a</u>
<u>Significance</u>											
LED intensity	4	*	<u>NS</u>	<u>NS</u>	*	*	<u>NS</u>	*	*	*	*
Glutamic acid	1	<u>NS</u>	<u>NS</u>	<u>NS</u>	<u>NS</u>	<u>NS</u>	<u>NS</u>	<u>NS</u>	<u>NS</u>	<u>NS</u>	<u>NS</u>
LED intensity	x Glutamic acid	*	<u>NS</u>	<u>NS</u>	*	*	<u>NS</u>	*	*	*	*

Table 6. Effects of LED light intensity and Glutamic acid on the growth of strawberry plant grown in controlled environment facilities.

²LED intensity low, medium and high are 149, 269 and 567 μ mol m⁻² s⁻¹, ³Values in a column for main-plot factor (LED intensity), sub-plot factor (Glutamic acid) and their interaction having the same letters are not significantly different according to the Tukey's test at *P* <0.05. ^aGlutamic acid applied (+), not applied (-). ^aSignificant and ^{NS}Not significant at the 5% level.

Glu/LED quantity		Number of fruit plant ⁺	Average fruit weight (g)	Fruit yield (g plant ⁻⁺)	Total soluble solid (%)	Citric acidity (%)	Ascorbic acid (ppm)
Effect of Glu							
-		19.7	5.6	113.2 b	6.2	0.43	381.6
+		26.9	5.8	159.0 a	6.4	0.44	368.6
Effect of LED quar	+++++						
Low	ury .	15.6 c	49c	75.4 c	5.4 b	0.44	377 /
Modium		22.0 b	5.2 h	121.0 h	6.2 ab	0.44	360.0
High		21.5 0	5.5 0	212.0 0	7.2 0	0.44	287.0
mgn		51.5 u	0.7 u	212.0 a	7.2 u	0.44	301.9
Interaction effect of	Glu and LED						
quantity							
Low	_	13.2 c	<u>-4.6-b</u>	<u>-60.6 d</u>	5.3 c	0.44	389.9
	+	18.0 be	-5.1 b	- 90.1 cd	5.5 c	0.43	364.9 •
							•
Medium	-	20.2 be	- 5.2 b	104.0 cd	6.2 b	0.44	368.4 •
	+	25.6 b	- 5.4 b	138.0 be	6.3 b	0.44	351.5
							•
High	-	25.8 b	- 6.9 a	175.0 b	7.0 a	0.42	386.4 •
	+	37.2 а	- 6.8 a	249.0 a	7.3 a	0.45	389.4 •
Significance							•
Glu		NS	NS	<u>*</u>	NS	NS	NS •
 LED quantity 		*	*	<u>*</u>	*	NS	NS
Interaction		<u>*</u>	<u>*</u>	<u>*</u>	<u>*</u>	NS	NS

Table 6. Effects of LED light in controlled environ nt facilitie nd Glutamic on fruit

1.04 - ranges in a cotumn followed by different letter(s) differ significant LED quantity low, medium and high are 149, 269 and 567 μ mol m²s⁻¹ - Glutamic acid applied (+), not applied (-). nificantly by Tukey's test. Significant at the 5% level (*), Not significant (NS).

Formatted: Indent: Left: 0 cm Formatted: Indent: Left: 0 cm Formatted Formatted: Indent: Left: 0 cm Formatted: Indent: Left: 0 cm Formatted Formatted: Indent: Left: 0 cm Formatted: Indent: Left: 0 cm Formatted Formatted: Indent: Left: 0 cm

10

LED intensity and Glu	<u>itamic acid</u>	Number of fruit plant ⁻¹	Average fruit weight (g)	Total soluble solid (%)	Citric acidity (%)	Ascorbic acid (ppm)
<u>LED intensity^z</u> Low Medium High		$\frac{15.6 \text{ c}^{\text{y}}}{22.9 \text{ b}}$ 31.5 a	<u>4.9 c</u> <u>5.3 b</u> <u>6.9 a</u>	<u>5.4 b</u> <u>6.3 ab</u> 7.2 a	<u>0.44 a</u> <u>0.44 a</u> <u>0.44 a</u>	<u>377.4 a</u> <u>360.0 a</u> <u>387.9 a</u>
<u>Glutamic acid^x</u> <u>Glu (-)</u> <u>Glu (+)</u>		<u>19.7 a</u> <u>26.9 a</u>	<u>5.6 a</u> <u>5.8 a</u>	<u>6.2 a</u> <u>6.4 a</u>	<u>0.43 a</u> <u>0.44 a</u>	<u>381.6 a</u> <u>368.6 a</u>
<u>LED intensity x Gluta</u> Low	<u>mic acid</u> <u>Glu (-)</u> <u>Glu (+)</u>	<u>13.2 c</u> <u>18.0 bc</u>	<u>4.6 b</u> <u>5.1 b</u>	<u>5.3 c</u> <u>5.5 c</u>	<u>0.44 a</u> <u>0.43 a</u>	<u>389.9 a</u> <u>364.9 a</u>
<u>Medium</u>	<u>Glu (-)</u> <u>Glu (+)</u>	<u>20.2 bc</u> <u>25.6 b</u>	<u>5.2 b</u> 5.4 b	<u>6.2 b</u> <u>6.3 b</u>	<u>0.44 a</u> <u>0.44 a</u>	<u>368.4 a</u> <u>351.5 a</u>
<u>High</u>	<u>Glu (-)</u> <u>Glu (+)</u>	<u>25.8 b</u> <u>37.2 a</u>	<u>6.9 a</u> <u>6.8 a</u>	<u>7.0 a</u> <u>7.3 a</u>	<u>0.42 a</u> <u>0.45 a</u>	<u>386.4 a</u> <u>389.4 a</u>
<u>Significance</u> <u>LED intensity</u> <u>Glutamic acid</u> <u>LED intensity x Glu</u>	Itamic acid	* <u>NS</u> *	* <u>NS</u> *	* <u>NS</u> *	NS NS NS	NS NS NS

Table 7. Effects of LED light intensity and Glutamic acid on yield attributes and quality of strawberry grown in controlled environment facilities.

²LED intensity as low, medium and high are 149, 269 and 567 μ mol m⁻² s⁻¹. ³Values in a column for main-plot factor (LED intensity), sub-plot factor (Glutamic acid) and their interaction having the same letters are not significantly different according to the Tukey's test at P < 0.05.

^xGlutamic acid applied (+), not applied (-). ^{*}Significant and ^{NS}Not significant at the 5% level.

Table 7. Effects of LED quantities and Glutamic acid on mineral nutrient content of strawberry plant grown in controlled environment facilities.															
Glu/LED quantity		K (mg g ⁻⁴	K (mg g ⁻⁴ DW)			Mg (mg g ⁴ DW)			Ca (mg g⁴ DW)			Fe (mg kg ⁻¹ -DW)			
		Root	Crown	Leaf	Root	Crown	Leaf	Root	Crown	Leaf	Root	Crown	Leaf	• /	
Effect of Glu														•	
-		27.7	34.5	49.1	13.2	73.6	12.9	60.8	4 5.7	4 8.9	1589	723	$\frac{100}{100}$		
+		29.7	34.3	51.0	12.5	70.4	12.5	61.2	49.8	49.3	1550	734	107		
Effect of LED quar	tity														
Low		26.0	35.0	52.2	13.1	69.6	13.9	34.1 b	38.6 b	44.5	1455 b	- 564 b	- 84 b		
Medium		28.8	36.0	52.4	11.4	70.8	12.9	72.0 a	40.9 b	53.5	1631 a	<u>-601 b</u>	<u>95 b</u>		
High		31.4	32.2	45.5	14.1	75.6	11.4	77.0 a	63.6 a	49.3	1623 a	1022 a	131 a		
Interaction effect o	f Glu and LE	Ð													
quantity															
Low	-	24.8	34.9	4 9.8	13.9	68.4	14.0	33.6 b	37.4 b	38.6 b	1463 b	-554 b	94-b	•//	
	+	27.2	35.2	54.6	12.2	70.8	13.8	34.6 b	39.8 b	50.4 a	1446 b	- 574 b	74-e	-	
Medium	_	26.7	<u>35.8</u>	51.6	11.1	72.4	13.7	69.9 a	39.8 b	58.8 a	1670 a	- 666 b	<u>82-</u> ь	1	
	+	30.9	36.2	53.1	11.6	69.2	12.0	74.0 a	42.1 b	48.2 а	1592 а	- 536 b	107 b		
High	_	31.7	32.8	45.9	14.5	80.0	11.1	79.0 a	59.8 a	49.2 a	1634 a	<u>- 950 b</u>	123 al		
6	+	31.0	31.5	45.2	13.8	71.2	11.8	75.0 a	67.5 a	49.4 a	1611 a	1093 a	1 <u>39 a</u>		
Significance															
Glu		NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS		
- LED quantity		NS	NS	NS	NS	NS	NS	*	<u>*</u>	NS	*	<u>*</u>	*		
-Interaction		NS	NS	NS	NS	NS	NS	<u>*</u>	<u>*</u>		<u>*</u>	<u>*</u>	<u>*</u>	-	

Noter Values in a column followed by different letter(s) differ significantly by Tukey's test. Significant at the 5% level (*), Not significant (NS). DW = Dry weight. *LED quantity low, medium and high are 149, 269 and 567 μ mol m⁻²s⁻¹.

Formatted	
Formatted	

12

LED intensity and Glutamic acid		<u>K (mg g⁻¹ DW)</u>			<u>Mg (mg g⁻¹ DW)</u>			<u>Ca (mg g⁻¹ DW)</u>			Fe (mg kg ⁻¹ DW)		
		Root	<u>Crown</u>	Leaf	Root	<u>Crown</u>	Leaf	<u>Root</u>	<u>Crown</u>	<u>Leaf</u>	Root	<u>Crown</u>	Leaf
<u>LED intensity^z</u> Low <u>Medium</u> High		<u>26.0 a^y</u> <u>28.8 a</u> <u>31.4 a</u>	<u>35.0 a</u> <u>36.0 a</u> <u>32.2 a</u>	<u>52.2 a</u> <u>52.4 a</u> <u>45.5 a</u>	<u>13.1 a</u> <u>11.4 a</u> <u>14.1 a</u>	<u>69.6 a</u> 70.8 a 75.6 a	<u>13.9 a</u> <u>12.9 a</u> <u>11.4 a</u>	<u>34.1 b</u> <u>72.0 a</u> <u>77.0 a</u>	<u>38.6 b</u> <u>40.9 b</u> <u>63.6 a</u>	<u>44.5 a</u> <u>53.5 a</u> <u>49.3 a</u>	<u>1455 b</u> <u>1631 a</u> <u>1623 a</u>	<u>564 b</u> <u>601 b</u> 1022 a	<u>84 b</u> 95 b 131 a
<u>Glutamic acid^x Glu (-)</u> <u>Glu (+)</u>		<u>27.7 a</u> <u>29.7 a</u>	<u>34.5 a</u> <u>34.3 a</u>	<u>49.1 a</u> <u>51.0 a</u>	<u>13.2 a</u> 12.5 a	<u>73.6 a</u> 70.4 a	<u>12.9 a</u> 12.5 a	<u>60.8 a</u> <u>61.2 a</u>	<u>45.7 a</u> <u>49.8 a</u>	<u>48.9 a</u> 49.3 a	<u>1589 a</u> <u>1550 a</u>	<u>723 a</u> 734 a	<u>100 a</u> 107 a
<u>LED intensity x Glutan</u> Low	<u>uic acid</u> <u>Glu (-)</u> <u>Glu (+)</u>	<u>24.8 a</u> 27.2 a	<u>34.9 a</u> <u>35.2 a</u>	<u>49.8 a</u> 54.6 a	<u>13.9 a</u> 12.2 a	<u>68.4 a</u> 70.8 a	<u>14.0 a</u> <u>13.8 a</u>	<u>33.6 b</u> 34.6 b	<u>37.4 b</u> <u>39.8 b</u>	<u>38.6 b</u> 50.4 a	<u>1463 b</u> <u>1446 b</u>	<u>554 b</u> 574 b	<u>94 b</u> 74 c
<u>Medium</u>	<u>Glu (-)</u> <u>Glu (+)</u>	<u>26.7 a</u> <u>30.9 a</u>	<u>35.8 a</u> <u>36.2 a</u>	<u>51.6 a</u> 53.1 a	<u>11.1 a</u> <u>11.6 a</u>	<u>72.4 a</u> <u>69.2 a</u>	<u>13.7 a</u> <u>12.0 a</u>	<u>69.9 a</u> 74.0 a	<u>39.8 b</u> 42.1 b	<u>58.8 a</u> <u>48.2 a</u>	<u>1670 a</u> <u>1592 a</u>	<u>666 b</u> 536 b	<u>82 b</u> 107 b
High	<u>Glu (-)</u> <u>Glu (+)</u>	<u>31.7 a</u> <u>31.0 a</u>	<u>32.8 a</u> <u>31.5 a</u>	<u>45.9 a</u> <u>45.2 a</u>	<u>14.5 a</u> <u>13.8 a</u>	<u>80.0 a</u> 71.2 a	<u>11.1 a</u> <u>11.8 a</u>	<u>79.0 a</u> 75.0 a	<u>59.8 a</u> <u>67.5 a</u>	<u>49.2 a</u> <u>49.4 a</u>	<u>1634 a</u> <u>1611 a</u>	<u>950 b</u> 1093 a	<u>123 ab</u> <u>139 a</u>
<u>Significance</u> <u>LED intensity</u> <u>Glutamic acid</u> <u>LED intensity x Glutamic acid</u>		<u>NS</u> <u>NS</u> <u>NS</u>	<u>NS</u> NS NS	<u>NS</u> NS NS	<u>NS</u> NS NS	<u>NS</u> <u>NS</u> NS	<u>NS</u> NS NS	* <u>NS</u> *	* <u>NS</u> *	<u>NS</u> <u>NS</u> *	* <u>NS</u> *	* <u>NS</u> *	* <u>NS</u> *

Table 8. Effects of LED quantities and Glutamic acid on mineral nutrient content of strawberry plant grown in controlled environment facilities.

^zLED intensity as low, medium and high are 149, 269 and 567 μ mol m⁻² s⁻¹. ^yValues in a column for main-plot factor (LED intensity), sub-plot factor (Glutamic acid) and their interaction having the same letters are not significantly different according to the Tukey's test at *P* <0.05. ^xGlutamic acid applied (+), not applied (-). ^xSignificant and ^{NS}Not significant at the 5% level. <u>DW</u> = Dry weight.

Fig. 1. Three layered vertical growing beds used for cultivation of strawberry plants under controlled-environment. In the first experiment, plastic container filled with 3 L of 25% standard nutrient solution was used for each plant. Three combinations of LED [Red (660 nm): Blue (450 nm)] lights (i.e., 2:8, 5:5, and 8:2, bottom, middle and top grow bed, respectively) **[A]** were used along with fluorescent lamps **[B]** as a control. The light panel was set at about 20 cm above the surface of the plant canopy. In the second experiment **[C]**, each grow bed with 50 L nutrient solution capacity was used. Two beds placed parallel to each other were connected to a tank filled with 200 L nutrient solution. Six individual systems used for six treatments (i.e., three light conditions either with or without Glu). LED combination was used (i.e., R: B = 8:2) with three different intensities (i.e., 149, 269, and 567 μ mol m⁻² s⁻¹).

Fig. 2. Irradiance of three types of LEDs, (**A**) Red: Blue = 8:2, (**B**) Red: Blue = 5:5, and (**C**) Red: Blue = 8:2 used in this experiment. The measurement was conducted at 25 °C. The commercial LEDs were supplied from Showa Denko K.K. Green Innovation Project, Japan.

Fig. 3. The effects of light quality and amino acids spray on the fruit yield of strawberry grown under heat stress condition. Bars with the same letter(s) are not significantly different according to the Tukey's Test at P < 0.05.

LED intensity and Glutamic acid

Fig. 4. The effects of LED light intensity and Glutamic acid application on the fruit yield of strawberry grown in controlled environment facilities. Bars with the same letter are not significantly different according to the Tukey's test at P < 0.05. LED intensity low, medium and high are 149, 269 and 567 μ mol m⁻² s⁻¹. Glutamic acid applied (+), not applied (-).